Step |
Hyp |
Ref |
Expression |
1 |
|
limcmpt2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
2 |
|
limcmpt2.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝐴 ) |
3 |
|
limcmpt2.f |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) → 𝐷 ∈ ℂ ) |
4 |
|
limcmpt2.j |
⊢ 𝐽 = ( 𝐾 ↾t 𝐴 ) |
5 |
|
limcmpt2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
6 |
1
|
ssdifssd |
⊢ ( 𝜑 → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
7 |
1 2
|
sseldd |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
8 |
|
eldifsn |
⊢ ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∧ 𝑧 ≠ 𝐵 ) ) |
9 |
8 3
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ) → 𝐷 ∈ ℂ ) |
10 |
|
eqid |
⊢ ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) |
11 |
6 7 9 10 5
|
limcmpt |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
12 |
|
undif1 |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = ( 𝐴 ∪ { 𝐵 } ) |
13 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ 𝐴 ) |
14 |
|
ssequn2 |
⊢ ( { 𝐵 } ⊆ 𝐴 ↔ ( 𝐴 ∪ { 𝐵 } ) = 𝐴 ) |
15 |
13 14
|
sylib |
⊢ ( 𝜑 → ( 𝐴 ∪ { 𝐵 } ) = 𝐴 ) |
16 |
12 15
|
syl5eq |
⊢ ( 𝜑 → ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) = 𝐴 ) |
17 |
16
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) = ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ) |
18 |
16
|
oveq2d |
⊢ ( 𝜑 → ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = ( 𝐾 ↾t 𝐴 ) ) |
19 |
18 4
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) = 𝐽 ) |
20 |
19
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) = ( 𝐽 CnP 𝐾 ) ) |
21 |
20
|
fveq1d |
⊢ ( 𝜑 → ( ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) = ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
22 |
17 21
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝑧 ∈ ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( ( 𝐾 ↾t ( ( 𝐴 ∖ { 𝐵 } ) ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
23 |
11 22
|
bitrd |
⊢ ( 𝜑 → ( 𝐶 ∈ ( ( 𝑧 ∈ ( 𝐴 ∖ { 𝐵 } ) ↦ 𝐷 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ 𝐴 ↦ if ( 𝑧 = 𝐵 , 𝐶 , 𝐷 ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |