Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | limcmptdm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
limcmptdm.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | ||
limcmptdm.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ) | ||
Assertion | limcmptdm | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limcmptdm.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) | |
2 | limcmptdm.b | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ ℂ ) | |
3 | limcmptdm.c | ⊢ ( 𝜑 → 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) ) | |
4 | 1 2 | dmmptd | ⊢ ( 𝜑 → dom 𝐹 = 𝐴 ) |
5 | limcrcl | ⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐷 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) | |
6 | 3 5 | syl | ⊢ ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) ) |
7 | 6 | simp2d | ⊢ ( 𝜑 → dom 𝐹 ⊆ ℂ ) |
8 | 4 7 | eqsstrrd | ⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |