Metamath Proof Explorer


Theorem limcmptdm

Description: The domain of a maps-to function with a limit. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses limcmptdm.f 𝐹 = ( 𝑥𝐴𝐵 )
limcmptdm.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
limcmptdm.c ( 𝜑𝐶 ∈ ( 𝐹 lim 𝐷 ) )
Assertion limcmptdm ( 𝜑𝐴 ⊆ ℂ )

Proof

Step Hyp Ref Expression
1 limcmptdm.f 𝐹 = ( 𝑥𝐴𝐵 )
2 limcmptdm.b ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ ℂ )
3 limcmptdm.c ( 𝜑𝐶 ∈ ( 𝐹 lim 𝐷 ) )
4 1 2 dmmptd ( 𝜑 → dom 𝐹 = 𝐴 )
5 limcrcl ( 𝐶 ∈ ( 𝐹 lim 𝐷 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) )
6 3 5 syl ( 𝜑 → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ ) )
7 6 simp2d ( 𝜑 → dom 𝐹 ⊆ ℂ )
8 4 7 eqsstrrd ( 𝜑𝐴 ⊆ ℂ )