Step |
Hyp |
Ref |
Expression |
1 |
|
limccl.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limccl.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
3 |
|
limccl.b |
⊢ ( 𝜑 → 𝐵 ∈ ℂ ) |
4 |
|
ellimc2.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
|
limcnlp.n |
⊢ ( 𝜑 → ¬ 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ) |
6 |
1 2 3 4
|
ellimc2 |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
7 |
4
|
cnfldtop |
⊢ 𝐾 ∈ Top |
8 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐴 ⊆ ℂ ) |
9 |
8
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) |
10 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
11 |
10
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
12 |
11
|
clscld |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) ) |
13 |
7 9 12
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) ) |
14 |
11
|
cldopn |
⊢ ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) → ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ) |
15 |
13 14
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ) |
16 |
11
|
islp |
⊢ ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
17 |
7 2 16
|
sylancr |
⊢ ( 𝜑 → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
18 |
5 17
|
mtbid |
⊢ ( 𝜑 → ¬ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
19 |
3 18
|
eldifd |
⊢ ( 𝜑 → 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
21 |
|
difin2 |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) |
22 |
9 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) |
23 |
11
|
sscls |
⊢ ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
24 |
7 9 23
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) |
25 |
|
ssdif0 |
⊢ ( ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ↔ ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ ) |
26 |
24 25
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ ) |
27 |
22 26
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ∅ ) |
28 |
27
|
imaeq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ∅ ) ) |
29 |
|
ima0 |
⊢ ( 𝐹 “ ∅ ) = ∅ |
30 |
28 29
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ ) |
31 |
|
0ss |
⊢ ∅ ⊆ 𝑢 |
32 |
30 31
|
eqsstrdi |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
33 |
|
eleq2 |
⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝐵 ∈ 𝑣 ↔ 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) ) |
34 |
|
ineq1 |
⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) |
35 |
34
|
imaeq2d |
⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ) |
36 |
35
|
sseq1d |
⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
37 |
33 36
|
anbi12d |
⊢ ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
38 |
37
|
rspcev |
⊢ ( ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ∧ ( 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
39 |
15 20 32 38
|
syl12anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
40 |
39
|
a1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
41 |
40
|
ralrimivw |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℂ ) → ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
42 |
41
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ → ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
43 |
42
|
pm4.71d |
⊢ ( 𝜑 → ( 𝑥 ∈ ℂ ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ 𝐾 ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ 𝐾 ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
44 |
6 43
|
bitr4d |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ 𝑥 ∈ ℂ ) ) |
45 |
44
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐵 ) = ℂ ) |