Metamath Proof Explorer


Theorem limcnlp

Description: If B is not a limit point of the domain of the function F , then every point is a limit of F at B . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limccl.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
limccl.a ( 𝜑𝐴 ⊆ ℂ )
limccl.b ( 𝜑𝐵 ∈ ℂ )
ellimc2.k 𝐾 = ( TopOpen ‘ ℂfld )
limcnlp.n ( 𝜑 → ¬ 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) )
Assertion limcnlp ( 𝜑 → ( 𝐹 lim 𝐵 ) = ℂ )

Proof

Step Hyp Ref Expression
1 limccl.f ( 𝜑𝐹 : 𝐴 ⟶ ℂ )
2 limccl.a ( 𝜑𝐴 ⊆ ℂ )
3 limccl.b ( 𝜑𝐵 ∈ ℂ )
4 ellimc2.k 𝐾 = ( TopOpen ‘ ℂfld )
5 limcnlp.n ( 𝜑 → ¬ 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) )
6 1 2 3 4 ellimc2 ( 𝜑 → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) )
7 4 cnfldtop 𝐾 ∈ Top
8 2 adantr ( ( 𝜑𝑥 ∈ ℂ ) → 𝐴 ⊆ ℂ )
9 8 ssdifssd ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ )
10 4 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
11 10 toponunii ℂ = 𝐾
12 11 clscld ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) )
13 7 9 12 sylancr ( ( 𝜑𝑥 ∈ ℂ ) → ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) )
14 11 cldopn ( ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ∈ ( Clsd ‘ 𝐾 ) → ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 )
15 13 14 syl ( ( 𝜑𝑥 ∈ ℂ ) → ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 )
16 11 islp ( ( 𝐾 ∈ Top ∧ 𝐴 ⊆ ℂ ) → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) )
17 7 2 16 sylancr ( 𝜑 → ( 𝐵 ∈ ( ( limPt ‘ 𝐾 ) ‘ 𝐴 ) ↔ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) )
18 5 17 mtbid ( 𝜑 → ¬ 𝐵 ∈ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) )
19 3 18 eldifd ( 𝜑𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) )
20 19 adantr ( ( 𝜑𝑥 ∈ ℂ ) → 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) )
21 difin2 ( ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) )
22 9 21 syl ( ( 𝜑𝑥 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) )
23 11 sscls ( ( 𝐾 ∈ Top ∧ ( 𝐴 ∖ { 𝐵 } ) ⊆ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) )
24 7 9 23 sylancr ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) )
25 ssdif0 ( ( 𝐴 ∖ { 𝐵 } ) ⊆ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ↔ ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ )
26 24 25 sylib ( ( 𝜑𝑥 ∈ ℂ ) → ( ( 𝐴 ∖ { 𝐵 } ) ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ )
27 22 26 eqtr3d ( ( 𝜑𝑥 ∈ ℂ ) → ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ∅ )
28 27 imaeq2d ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ∅ ) )
29 ima0 ( 𝐹 “ ∅ ) = ∅
30 28 29 eqtrdi ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ∅ )
31 0ss ∅ ⊆ 𝑢
32 30 31 eqsstrdi ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 )
33 eleq2 ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝐵𝑣𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ) )
34 ineq1 ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) = ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) )
35 34 imaeq2d ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) )
36 35 sseq1d ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ↔ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) )
37 33 36 anbi12d ( 𝑣 = ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) → ( ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ↔ ( 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) )
38 37 rspcev ( ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∈ 𝐾 ∧ ( 𝐵 ∈ ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( ( ℂ ∖ ( ( cls ‘ 𝐾 ) ‘ ( 𝐴 ∖ { 𝐵 } ) ) ) ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) )
39 15 20 32 38 syl12anc ( ( 𝜑𝑥 ∈ ℂ ) → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) )
40 39 a1d ( ( 𝜑𝑥 ∈ ℂ ) → ( 𝑥𝑢 → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) )
41 40 ralrimivw ( ( 𝜑𝑥 ∈ ℂ ) → ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) )
42 41 ex ( 𝜑 → ( 𝑥 ∈ ℂ → ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) )
43 42 pm4.71d ( 𝜑 → ( 𝑥 ∈ ℂ ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢𝐾 ( 𝑥𝑢 → ∃ 𝑣𝐾 ( 𝐵𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( 𝐴 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) )
44 6 43 bitr4d ( 𝜑 → ( 𝑥 ∈ ( 𝐹 lim 𝐵 ) ↔ 𝑥 ∈ ℂ ) )
45 44 eqrdv ( 𝜑 → ( 𝐹 lim 𝐵 ) = ℂ )