Step |
Hyp |
Ref |
Expression |
1 |
|
df-limc |
⊢ limℂ = ( 𝑓 ∈ ( ℂ ↑pm ℂ ) , 𝑥 ∈ ℂ ↦ { 𝑦 ∣ [ ( TopOpen ‘ ℂfld ) / 𝑗 ] ( 𝑧 ∈ ( dom 𝑓 ∪ { 𝑥 } ) ↦ if ( 𝑧 = 𝑥 , 𝑦 , ( 𝑓 ‘ 𝑧 ) ) ) ∈ ( ( ( 𝑗 ↾t ( dom 𝑓 ∪ { 𝑥 } ) ) CnP 𝑗 ) ‘ 𝑥 ) } ) |
2 |
1
|
elmpocl |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐵 ∈ ℂ ) ) |
3 |
|
cnex |
⊢ ℂ ∈ V |
4 |
3 3
|
elpm2 |
⊢ ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐵 ∈ ℂ ) ↔ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ∧ 𝐵 ∈ ℂ ) ) |
6 |
|
df-3an |
⊢ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ↔ ( ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ) ∧ 𝐵 ∈ ℂ ) ) |
7 |
5 6
|
bitr4i |
⊢ ( ( 𝐹 ∈ ( ℂ ↑pm ℂ ) ∧ 𝐵 ∈ ℂ ) ↔ ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
8 |
2 7
|
sylib |
⊢ ( 𝐶 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |