Step |
Hyp |
Ref |
Expression |
1 |
|
limcres.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limcres.c |
⊢ ( 𝜑 → 𝐶 ⊆ 𝐴 ) |
3 |
|
limcres.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
4 |
|
limcres.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
5 |
|
limcres.j |
⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
6 |
|
limcres.i |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ) |
7 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) : dom ( 𝐹 ↾ 𝐶 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐶 ) ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
8 |
7
|
simp3d |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → 𝐵 ∈ ℂ ) |
9 |
|
limccl |
⊢ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ⊆ ℂ |
10 |
9
|
sseli |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
11 |
8 10
|
jca |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) |
12 |
11
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ) |
13 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
14 |
13
|
simp3d |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐵 ∈ ℂ ) |
15 |
|
limccl |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ℂ |
16 |
15
|
sseli |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ℂ ) |
17 |
14 16
|
jca |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) |
18 |
17
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ) |
19 |
4
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
20 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐴 ⊆ ℂ ) |
21 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐵 ∈ ℂ ) |
22 |
21
|
snssd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → { 𝐵 } ⊆ ℂ ) |
23 |
20 22
|
unssd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
24 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
25 |
19 23 24
|
sylancr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
26 |
5 25
|
eqeltrid |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
27 |
|
topontop |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → 𝐽 ∈ Top ) |
28 |
26 27
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐽 ∈ Top ) |
29 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐶 ⊆ 𝐴 ) |
30 |
|
unss1 |
⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐶 ∪ { 𝐵 } ) ⊆ ( 𝐴 ∪ { 𝐵 } ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐶 ∪ { 𝐵 } ) ⊆ ( 𝐴 ∪ { 𝐵 } ) ) |
32 |
|
toponuni |
⊢ ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ 𝐽 ) |
33 |
26 32
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐴 ∪ { 𝐵 } ) = ∪ 𝐽 ) |
34 |
31 33
|
sseqtrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐶 ∪ { 𝐵 } ) ⊆ ∪ 𝐽 ) |
35 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ) |
36 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) |
37 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) |
38 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
39 |
38
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
40 |
37 39
|
ifcld |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ 𝐴 ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
41 |
|
elsni |
⊢ ( 𝑧 ∈ { 𝐵 } → 𝑧 = 𝐵 ) |
42 |
41
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → 𝑧 = 𝐵 ) |
43 |
42
|
iftrued |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) = 𝑥 ) |
44 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → 𝑥 ∈ ℂ ) |
45 |
43 44
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
46 |
40 45
|
jaodan |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ ( 𝑧 ∈ 𝐴 ∨ 𝑧 ∈ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
47 |
36 46
|
sylan2b |
⊢ ( ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) ∧ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ) → if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
48 |
47
|
fmpttd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
49 |
33
|
feq2d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ∪ 𝐽 ⟶ ℂ ) ) |
50 |
48 49
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ∪ 𝐽 ⟶ ℂ ) |
51 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
52 |
19
|
toponunii |
⊢ ℂ = ∪ 𝐾 |
53 |
51 52
|
cnprest |
⊢ ( ( ( 𝐽 ∈ Top ∧ ( 𝐶 ∪ { 𝐵 } ) ⊆ ∪ 𝐽 ) ∧ ( 𝐵 ∈ ( ( int ‘ 𝐽 ) ‘ ( 𝐶 ∪ { 𝐵 } ) ) ∧ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) : ∪ 𝐽 ⟶ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
54 |
28 34 35 50 53
|
syl22anc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
55 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
56 |
5 4 55 38 20 21
|
ellimc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) ) |
57 |
|
eqid |
⊢ ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) |
58 |
|
eqid |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) |
59 |
38 29
|
fssresd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐹 ↾ 𝐶 ) : 𝐶 ⟶ ℂ ) |
60 |
29 20
|
sstrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → 𝐶 ⊆ ℂ ) |
61 |
57 4 58 59 60 21
|
ellimc |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
62 |
|
elun |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝐵 } ) ) |
63 |
|
velsn |
⊢ ( 𝑧 ∈ { 𝐵 } ↔ 𝑧 = 𝐵 ) |
64 |
63
|
orbi2i |
⊢ ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 ∈ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ) |
65 |
62 64
|
bitri |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↔ ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ) |
66 |
|
pm5.61 |
⊢ ( ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) ↔ ( 𝑧 ∈ 𝐶 ∧ ¬ 𝑧 = 𝐵 ) ) |
67 |
|
fvres |
⊢ ( 𝑧 ∈ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
69 |
66 68
|
sylbi |
⊢ ( ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) ∧ ¬ 𝑧 = 𝐵 ) → ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
70 |
69
|
ifeq2da |
⊢ ( ( 𝑧 ∈ 𝐶 ∨ 𝑧 = 𝐵 ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
71 |
65 70
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) → if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) = if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
72 |
71
|
mpteq2ia |
⊢ ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) = ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) |
73 |
31
|
resmptd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ) |
74 |
72 73
|
eqtr4id |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) = ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ) |
75 |
5
|
oveq1i |
⊢ ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ↾t ( 𝐶 ∪ { 𝐵 } ) ) |
76 |
|
cnex |
⊢ ℂ ∈ V |
77 |
76
|
ssex |
⊢ ( ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
78 |
23 77
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐴 ∪ { 𝐵 } ) ∈ V ) |
79 |
|
restabs |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐶 ∪ { 𝐵 } ) ⊆ ( 𝐴 ∪ { 𝐵 } ) ∧ ( 𝐴 ∪ { 𝐵 } ) ∈ V ) → ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) ) |
80 |
19 31 78 79
|
mp3an2i |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) ) |
81 |
75 80
|
eqtr2id |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) = ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) ) |
82 |
81
|
oveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) = ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ) |
83 |
82
|
fveq1d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) = ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) |
84 |
74 83
|
eleq12d |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( ( 𝑧 ∈ ( 𝐶 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( ( 𝐹 ↾ 𝐶 ) ‘ 𝑧 ) ) ) ∈ ( ( ( 𝐾 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
85 |
61 84
|
bitrd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ ( ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝑥 , ( 𝐹 ‘ 𝑧 ) ) ) ↾ ( 𝐶 ∪ { 𝐵 } ) ) ∈ ( ( ( 𝐽 ↾t ( 𝐶 ∪ { 𝐵 } ) ) CnP 𝐾 ) ‘ 𝐵 ) ) ) |
86 |
54 56 85
|
3bitr4rd |
⊢ ( ( 𝜑 ∧ ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
87 |
86
|
ex |
⊢ ( 𝜑 → ( ( 𝐵 ∈ ℂ ∧ 𝑥 ∈ ℂ ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) ) |
88 |
12 18 87
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ) ) |
89 |
88
|
eqrdv |
⊢ ( 𝜑 → ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) = ( 𝐹 limℂ 𝐵 ) ) |