Step |
Hyp |
Ref |
Expression |
1 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ) |
2 |
1
|
simp1d |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐹 : dom 𝐹 ⟶ ℂ ) |
3 |
1
|
simp2d |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → dom 𝐹 ⊆ ℂ ) |
4 |
1
|
simp3d |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝐵 ∈ ℂ ) |
5 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
6 |
2 3 4 5
|
ellimc2 |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
7 |
6
|
ibi |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
8 |
|
inss2 |
⊢ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) |
9 |
|
difss |
⊢ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∩ 𝐶 ) |
10 |
|
inss2 |
⊢ ( dom 𝐹 ∩ 𝐶 ) ⊆ 𝐶 |
11 |
9 10
|
sstri |
⊢ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ 𝐶 |
12 |
8 11
|
sstri |
⊢ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ 𝐶 |
13 |
|
resima2 |
⊢ ( ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ 𝐶 → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ) |
14 |
12 13
|
ax-mp |
⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) = ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) |
15 |
|
inss1 |
⊢ ( dom 𝐹 ∩ 𝐶 ) ⊆ dom 𝐹 |
16 |
|
ssdif |
⊢ ( ( dom 𝐹 ∩ 𝐶 ) ⊆ dom 𝐹 → ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∖ { 𝐵 } ) ) |
17 |
15 16
|
ax-mp |
⊢ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∖ { 𝐵 } ) |
18 |
|
sslin |
⊢ ( ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ⊆ ( dom 𝐹 ∖ { 𝐵 } ) → ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) |
19 |
|
imass2 |
⊢ ( ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ⊆ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) → ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ) |
20 |
17 18 19
|
mp2b |
⊢ ( 𝐹 “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) |
21 |
14 20
|
eqsstri |
⊢ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) |
22 |
|
sstr |
⊢ ( ( ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
23 |
21 22
|
mpan |
⊢ ( ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 → ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) |
24 |
23
|
anim2i |
⊢ ( ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
25 |
24
|
reximi |
⊢ ( ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) |
26 |
25
|
imim2i |
⊢ ( ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
27 |
26
|
ralimi |
⊢ ( ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) → ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) |
28 |
27
|
anim2i |
⊢ ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( 𝐹 “ ( 𝑣 ∩ ( dom 𝐹 ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) → ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
29 |
7 28
|
syl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) |
30 |
|
fresin |
⊢ ( 𝐹 : dom 𝐹 ⟶ ℂ → ( 𝐹 ↾ 𝐶 ) : ( dom 𝐹 ∩ 𝐶 ) ⟶ ℂ ) |
31 |
2 30
|
syl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝐹 ↾ 𝐶 ) : ( dom 𝐹 ∩ 𝐶 ) ⟶ ℂ ) |
32 |
15 3
|
sstrid |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( dom 𝐹 ∩ 𝐶 ) ⊆ ℂ ) |
33 |
31 32 4 5
|
ellimc2 |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑢 ∈ ( TopOpen ‘ ℂfld ) ( 𝑥 ∈ 𝑢 → ∃ 𝑣 ∈ ( TopOpen ‘ ℂfld ) ( 𝐵 ∈ 𝑣 ∧ ( ( 𝐹 ↾ 𝐶 ) “ ( 𝑣 ∩ ( ( dom 𝐹 ∩ 𝐶 ) ∖ { 𝐵 } ) ) ) ⊆ 𝑢 ) ) ) ) ) |
34 |
29 33
|
mpbird |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐵 ) → 𝑥 ∈ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) ) |
35 |
34
|
ssriv |
⊢ ( 𝐹 limℂ 𝐵 ) ⊆ ( ( 𝐹 ↾ 𝐶 ) limℂ 𝐵 ) |