Step |
Hyp |
Ref |
Expression |
1 |
|
limcresioolb.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) |
2 |
|
limcresioolb.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ ) |
3 |
|
limcresioolb.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ* ) |
4 |
|
limcresioolb.bltc |
⊢ ( 𝜑 → 𝐵 < 𝐶 ) |
5 |
|
limcresioolb.bcss |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ 𝐴 ) |
6 |
|
limcresioolb.d |
⊢ ( 𝜑 → 𝐷 ∈ ℝ* ) |
7 |
|
limcresioolb.cled |
⊢ ( 𝜑 → 𝐶 ≤ 𝐷 ) |
8 |
|
iooss2 |
⊢ ( ( 𝐷 ∈ ℝ* ∧ 𝐶 ≤ 𝐷 ) → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 (,) 𝐷 ) ) |
9 |
6 7 8
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 (,) 𝐷 ) ) |
10 |
9
|
resabs1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) = ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) ) |
11 |
10
|
eqcomd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) = ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) ) |
12 |
11
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) = ( ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) ) |
13 |
|
fresin |
⊢ ( 𝐹 : 𝐴 ⟶ ℂ → ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) : ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⟶ ℂ ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) : ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⟶ ℂ ) |
15 |
5 9
|
ssind |
⊢ ( 𝜑 → ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
16 |
|
inss2 |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ( 𝐵 (,) 𝐷 ) |
17 |
|
ioosscn |
⊢ ( 𝐵 (,) 𝐷 ) ⊆ ℂ |
18 |
16 17
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℂ |
19 |
18
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℂ ) |
20 |
|
eqid |
⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) |
21 |
|
eqid |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
22 |
2
|
rexrd |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
23 |
|
lbico1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → 𝐵 ∈ ( 𝐵 [,) 𝐶 ) ) |
24 |
22 3 4 23
|
syl3anc |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐵 [,) 𝐶 ) ) |
25 |
|
snunioo1 |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝐵 < 𝐶 ) → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) = ( 𝐵 [,) 𝐶 ) ) |
26 |
22 3 4 25
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) = ( 𝐵 [,) 𝐶 ) ) |
27 |
26
|
fveq2d |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( 𝐵 [,) 𝐶 ) ) ) |
28 |
20
|
cnfldtop |
⊢ ( TopOpen ‘ ℂfld ) ∈ Top |
29 |
|
ovex |
⊢ ( 𝐵 (,) 𝐷 ) ∈ V |
30 |
29
|
inex2 |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∈ V |
31 |
|
snex |
⊢ { 𝐵 } ∈ V |
32 |
30 31
|
unex |
⊢ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V |
33 |
|
resttop |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V ) → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top ) |
34 |
28 32 33
|
mp2an |
⊢ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top |
35 |
34
|
a1i |
⊢ ( 𝜑 → ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top ) |
36 |
|
mnfxr |
⊢ -∞ ∈ ℝ* |
37 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → -∞ ∈ ℝ* ) |
38 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐶 ∈ ℝ* ) |
39 |
|
icossre |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ* ) → ( 𝐵 [,) 𝐶 ) ⊆ ℝ ) |
40 |
2 3 39
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) ⊆ ℝ ) |
41 |
40
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ℝ ) |
42 |
41
|
mnfltd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → -∞ < 𝑥 ) |
43 |
22
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐵 ∈ ℝ* ) |
44 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
45 |
|
icoltub |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
46 |
43 38 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
47 |
37 38 41 42 46
|
eliood |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
48 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 = 𝐵 ) |
49 |
|
snidg |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ { 𝐵 } ) |
50 |
|
elun2 |
⊢ ( 𝐵 ∈ { 𝐵 } → 𝐵 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
51 |
2 49 50
|
3syl |
⊢ ( 𝜑 → 𝐵 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
53 |
48 52
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
54 |
53
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
55 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝜑 ) |
56 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
57 |
38
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐶 ∈ ℝ* ) |
58 |
41
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
59 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ ) |
60 |
|
icogelb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
61 |
43 38 44 60
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝐵 ≤ 𝑥 ) |
62 |
61
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ≤ 𝑥 ) |
63 |
|
neqne |
⊢ ( ¬ 𝑥 = 𝐵 → 𝑥 ≠ 𝐵 ) |
64 |
63
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ≠ 𝐵 ) |
65 |
59 58 62 64
|
leneltd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 < 𝑥 ) |
66 |
46
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐶 ) |
67 |
56 57 58 65 66
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
68 |
15
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
69 |
|
elun1 |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
70 |
68 69
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
71 |
55 67 70
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
72 |
54 71
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
73 |
47 72
|
elind |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) → 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
74 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐵 ∈ ( 𝐵 [,) 𝐶 ) ) |
75 |
48 74
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
76 |
75
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
77 |
|
ioossico |
⊢ ( 𝐵 (,) 𝐶 ) ⊆ ( 𝐵 [,) 𝐶 ) |
78 |
22
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 ∈ ℝ* ) |
79 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐶 ∈ ℝ* ) |
80 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
81 |
80
|
elioored |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) → 𝑥 ∈ ℝ ) |
82 |
81
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ℝ ) |
83 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐷 ∈ ℝ* ) |
84 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) → 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
85 |
|
id |
⊢ ( ¬ 𝑥 = 𝐵 → ¬ 𝑥 = 𝐵 ) |
86 |
|
velsn |
⊢ ( 𝑥 ∈ { 𝐵 } ↔ 𝑥 = 𝐵 ) |
87 |
85 86
|
sylnibr |
⊢ ( ¬ 𝑥 = 𝐵 → ¬ 𝑥 ∈ { 𝐵 } ) |
88 |
|
elunnel2 |
⊢ ( ( 𝑥 ∈ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∧ ¬ 𝑥 ∈ { 𝐵 } ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
89 |
84 87 88
|
syl2an |
⊢ ( ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ) |
90 |
16 89
|
sselid |
⊢ ( ( 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐷 ) ) |
91 |
90
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐷 ) ) |
92 |
|
ioogtlb |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐷 ∈ ℝ* ∧ 𝑥 ∈ ( 𝐵 (,) 𝐷 ) ) → 𝐵 < 𝑥 ) |
93 |
78 83 91 92
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝐵 < 𝑥 ) |
94 |
36
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → -∞ ∈ ℝ* ) |
95 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝐶 ∈ ℝ* ) |
96 |
80
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝑥 ∈ ( -∞ (,) 𝐶 ) ) |
97 |
|
iooltub |
⊢ ( ( -∞ ∈ ℝ* ∧ 𝐶 ∈ ℝ* ∧ 𝑥 ∈ ( -∞ (,) 𝐶 ) ) → 𝑥 < 𝐶 ) |
98 |
94 95 96 97
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝑥 < 𝐶 ) |
99 |
98
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 < 𝐶 ) |
100 |
78 79 82 93 99
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 (,) 𝐶 ) ) |
101 |
77 100
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ∧ ¬ 𝑥 = 𝐵 ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
102 |
76 101
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ) |
103 |
73 102
|
impbida |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐵 [,) 𝐶 ) ↔ 𝑥 ∈ ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ) |
104 |
103
|
eqrdv |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) = ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
105 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
106 |
105
|
a1i |
⊢ ( 𝜑 → ( topGen ‘ ran (,) ) ∈ Top ) |
107 |
32
|
a1i |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V ) |
108 |
|
iooretop |
⊢ ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) |
109 |
108
|
a1i |
⊢ ( 𝜑 → ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) ) |
110 |
|
elrestr |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ∈ V ∧ ( -∞ (,) 𝐶 ) ∈ ( topGen ‘ ran (,) ) ) → ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
111 |
106 107 109 110
|
syl3anc |
⊢ ( 𝜑 → ( ( -∞ (,) 𝐶 ) ∩ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
112 |
104 111
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) ∈ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
113 |
20
|
tgioo2 |
⊢ ( topGen ‘ ran (,) ) = ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) |
114 |
113
|
oveq1i |
⊢ ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) |
115 |
28
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ℂfld ) ∈ Top ) |
116 |
|
ioossre |
⊢ ( 𝐵 (,) 𝐷 ) ⊆ ℝ |
117 |
16 116
|
sstri |
⊢ ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℝ |
118 |
117
|
a1i |
⊢ ( 𝜑 → ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ⊆ ℝ ) |
119 |
2
|
snssd |
⊢ ( 𝜑 → { 𝐵 } ⊆ ℝ ) |
120 |
118 119
|
unssd |
⊢ ( 𝜑 → ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ⊆ ℝ ) |
121 |
|
reex |
⊢ ℝ ∈ V |
122 |
121
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
123 |
|
restabs |
⊢ ( ( ( TopOpen ‘ ℂfld ) ∈ Top ∧ ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ⊆ ℝ ∧ ℝ ∈ V ) → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
124 |
115 120 122 123
|
syl3anc |
⊢ ( 𝜑 → ( ( ( TopOpen ‘ ℂfld ) ↾t ℝ ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
125 |
114 124
|
eqtrid |
⊢ ( 𝜑 → ( ( topGen ‘ ran (,) ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) = ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
126 |
112 125
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) |
127 |
|
isopn3i |
⊢ ( ( ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ∈ Top ∧ ( 𝐵 [,) 𝐶 ) ∈ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( 𝐵 [,) 𝐶 ) ) = ( 𝐵 [,) 𝐶 ) ) |
128 |
35 126 127
|
syl2anc |
⊢ ( 𝜑 → ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( 𝐵 [,) 𝐶 ) ) = ( 𝐵 [,) 𝐶 ) ) |
129 |
27 128
|
eqtr2d |
⊢ ( 𝜑 → ( 𝐵 [,) 𝐶 ) = ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) ) |
130 |
24 129
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( ( int ‘ ( ( TopOpen ‘ ℂfld ) ↾t ( ( 𝐴 ∩ ( 𝐵 (,) 𝐷 ) ) ∪ { 𝐵 } ) ) ) ‘ ( ( 𝐵 (,) 𝐶 ) ∪ { 𝐵 } ) ) ) |
131 |
14 15 19 20 21 130
|
limcres |
⊢ ( 𝜑 → ( ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) limℂ 𝐵 ) ) |
132 |
12 131
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐵 (,) 𝐶 ) ) limℂ 𝐵 ) = ( ( 𝐹 ↾ ( 𝐵 (,) 𝐷 ) ) limℂ 𝐵 ) ) |