| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limcun.1 | ⊢ ( 𝜑  →  𝐴  ⊆  ℂ ) | 
						
							| 2 |  | limcun.2 | ⊢ ( 𝜑  →  𝐵  ⊆  ℂ ) | 
						
							| 3 |  | limcun.3 | ⊢ ( 𝜑  →  𝐹 : ( 𝐴  ∪  𝐵 ) ⟶ ℂ ) | 
						
							| 4 |  | limcrcl | ⊢ ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  →  ( 𝐹 : dom  𝐹 ⟶ ℂ  ∧  dom  𝐹  ⊆  ℂ  ∧  𝐶  ∈  ℂ ) ) | 
						
							| 5 | 4 | simp3d | ⊢ ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  →  𝐶  ∈  ℂ ) | 
						
							| 6 | 5 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  →  𝐶  ∈  ℂ ) ) | 
						
							| 7 |  | elinel1 | ⊢ ( 𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) )  →  𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 ) ) | 
						
							| 8 |  | limcrcl | ⊢ ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  →  ( ( 𝐹  ↾  𝐴 ) : dom  ( 𝐹  ↾  𝐴 ) ⟶ ℂ  ∧  dom  ( 𝐹  ↾  𝐴 )  ⊆  ℂ  ∧  𝐶  ∈  ℂ ) ) | 
						
							| 9 | 8 | simp3d | ⊢ ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  →  𝐶  ∈  ℂ ) | 
						
							| 10 | 7 9 | syl | ⊢ ( 𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) )  →  𝐶  ∈  ℂ ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) )  →  𝐶  ∈  ℂ ) ) | 
						
							| 12 |  | prfi | ⊢ { 𝐴 ,  𝐵 }  ∈  Fin | 
						
							| 13 | 12 | a1i | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  { 𝐴 ,  𝐵 }  ∈  Fin ) | 
						
							| 14 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐴  ⊆  ℂ ) | 
						
							| 15 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐵  ⊆  ℂ ) | 
						
							| 16 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 17 | 16 | ssex | ⊢ ( 𝐴  ⊆  ℂ  →  𝐴  ∈  V ) | 
						
							| 18 | 14 17 | syl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐴  ∈  V ) | 
						
							| 19 | 16 | ssex | ⊢ ( 𝐵  ⊆  ℂ  →  𝐵  ∈  V ) | 
						
							| 20 | 15 19 | syl | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐵  ∈  V ) | 
						
							| 21 |  | sseq1 | ⊢ ( 𝑦  =  𝐴  →  ( 𝑦  ⊆  ℂ  ↔  𝐴  ⊆  ℂ ) ) | 
						
							| 22 |  | sseq1 | ⊢ ( 𝑦  =  𝐵  →  ( 𝑦  ⊆  ℂ  ↔  𝐵  ⊆  ℂ ) ) | 
						
							| 23 | 21 22 | ralprg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦  ⊆  ℂ  ↔  ( 𝐴  ⊆  ℂ  ∧  𝐵  ⊆  ℂ ) ) ) | 
						
							| 24 | 18 20 23 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦  ⊆  ℂ  ↔  ( 𝐴  ⊆  ℂ  ∧  𝐵  ⊆  ℂ ) ) ) | 
						
							| 25 | 14 15 24 | mpbir2and | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦  ⊆  ℂ ) | 
						
							| 26 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐹 : ( 𝐴  ∪  𝐵 ) ⟶ ℂ ) | 
						
							| 27 |  | uniiun | ⊢ ∪  { 𝐴 ,  𝐵 }  =  ∪  𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦 | 
						
							| 28 |  | uniprg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 29 | 18 20 28 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ∪  { 𝐴 ,  𝐵 }  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 30 | 27 29 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ∪  𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦  =  ( 𝐴  ∪  𝐵 ) ) | 
						
							| 31 | 30 | feq2d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( 𝐹 : ∪  𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦 ⟶ ℂ  ↔  𝐹 : ( 𝐴  ∪  𝐵 ) ⟶ ℂ ) ) | 
						
							| 32 | 26 31 | mpbird | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐹 : ∪  𝑦  ∈  { 𝐴 ,  𝐵 } 𝑦 ⟶ ℂ ) | 
						
							| 33 |  | simpr | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  𝐶  ∈  ℂ ) | 
						
							| 34 | 13 25 32 33 | limciun | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( 𝐹  limℂ  𝐶 )  =  ( ℂ  ∩  ∩  𝑦  ∈  { 𝐴 ,  𝐵 } ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) ) ) | 
						
							| 35 | 34 | eleq2d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  ↔  𝑥  ∈  ( ℂ  ∩  ∩  𝑦  ∈  { 𝐴 ,  𝐵 } ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) ) ) ) | 
						
							| 36 |  | reseq2 | ⊢ ( 𝑦  =  𝐴  →  ( 𝐹  ↾  𝑦 )  =  ( 𝐹  ↾  𝐴 ) ) | 
						
							| 37 | 36 | oveq1d | ⊢ ( 𝑦  =  𝐴  →  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 )  =  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 ) ) | 
						
							| 38 | 37 | eleq2d | ⊢ ( 𝑦  =  𝐴  →  ( 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 )  ↔  𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 ) ) ) | 
						
							| 39 |  | reseq2 | ⊢ ( 𝑦  =  𝐵  →  ( 𝐹  ↾  𝑦 )  =  ( 𝐹  ↾  𝐵 ) ) | 
						
							| 40 | 39 | oveq1d | ⊢ ( 𝑦  =  𝐵  →  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 )  =  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) | 
						
							| 41 | 40 | eleq2d | ⊢ ( 𝑦  =  𝐵  →  ( 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 )  ↔  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) | 
						
							| 42 | 38 41 | ralprg | ⊢ ( ( 𝐴  ∈  V  ∧  𝐵  ∈  V )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 )  ↔  ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 43 | 18 20 42 | syl2anc | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 )  ↔  ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 44 | 43 | anbi2d | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( ( 𝑥  ∈  ℂ  ∧  ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) ) | 
						
							| 45 |  | limccl | ⊢ ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ⊆  ℂ | 
						
							| 46 | 45 | sseli | ⊢ ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  →  𝑥  ∈  ℂ ) | 
						
							| 47 | 46 | adantr | ⊢ ( ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) )  →  𝑥  ∈  ℂ ) | 
						
							| 48 | 47 | pm4.71ri | ⊢ ( ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 49 | 44 48 | bitr4di | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( ( 𝑥  ∈  ℂ  ∧  ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) )  ↔  ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 50 |  | elriin | ⊢ ( 𝑥  ∈  ( ℂ  ∩  ∩  𝑦  ∈  { 𝐴 ,  𝐵 } ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) )  ↔  ( 𝑥  ∈  ℂ  ∧  ∀ 𝑦  ∈  { 𝐴 ,  𝐵 } 𝑥  ∈  ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) ) ) | 
						
							| 51 |  | elin | ⊢ ( 𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) )  ↔  ( 𝑥  ∈  ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∧  𝑥  ∈  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) | 
						
							| 52 | 49 50 51 | 3bitr4g | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( 𝑥  ∈  ( ℂ  ∩  ∩  𝑦  ∈  { 𝐴 ,  𝐵 } ( ( 𝐹  ↾  𝑦 )  limℂ  𝐶 ) )  ↔  𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 53 | 35 52 | bitrd | ⊢ ( ( 𝜑  ∧  𝐶  ∈  ℂ )  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  ↔  𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 54 | 53 | ex | ⊢ ( 𝜑  →  ( 𝐶  ∈  ℂ  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  ↔  𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) ) | 
						
							| 55 | 6 11 54 | pm5.21ndd | ⊢ ( 𝜑  →  ( 𝑥  ∈  ( 𝐹  limℂ  𝐶 )  ↔  𝑥  ∈  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) ) | 
						
							| 56 | 55 | eqrdv | ⊢ ( 𝜑  →  ( 𝐹  limℂ  𝐶 )  =  ( ( ( 𝐹  ↾  𝐴 )  limℂ  𝐶 )  ∩  ( ( 𝐹  ↾  𝐵 )  limℂ  𝐶 ) ) ) |