| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limcun.1 |
⊢ ( 𝜑 → 𝐴 ⊆ ℂ ) |
| 2 |
|
limcun.2 |
⊢ ( 𝜑 → 𝐵 ⊆ ℂ ) |
| 3 |
|
limcun.3 |
⊢ ( 𝜑 → 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) |
| 4 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) → ( 𝐹 : dom 𝐹 ⟶ ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 5 |
4
|
simp3d |
⊢ ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) → 𝐶 ∈ ℂ ) ) |
| 7 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ) |
| 8 |
|
limcrcl |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) → ( ( 𝐹 ↾ 𝐴 ) : dom ( 𝐹 ↾ 𝐴 ) ⟶ ℂ ∧ dom ( 𝐹 ↾ 𝐴 ) ⊆ ℂ ∧ 𝐶 ∈ ℂ ) ) |
| 9 |
8
|
simp3d |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) → 𝐶 ∈ ℂ ) |
| 10 |
7 9
|
syl |
⊢ ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝐶 ∈ ℂ ) |
| 11 |
10
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝐶 ∈ ℂ ) ) |
| 12 |
|
prfi |
⊢ { 𝐴 , 𝐵 } ∈ Fin |
| 13 |
12
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → { 𝐴 , 𝐵 } ∈ Fin ) |
| 14 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐴 ⊆ ℂ ) |
| 15 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ⊆ ℂ ) |
| 16 |
|
cnex |
⊢ ℂ ∈ V |
| 17 |
16
|
ssex |
⊢ ( 𝐴 ⊆ ℂ → 𝐴 ∈ V ) |
| 18 |
14 17
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐴 ∈ V ) |
| 19 |
16
|
ssex |
⊢ ( 𝐵 ⊆ ℂ → 𝐵 ∈ V ) |
| 20 |
15 19
|
syl |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐵 ∈ V ) |
| 21 |
|
sseq1 |
⊢ ( 𝑦 = 𝐴 → ( 𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ ) ) |
| 22 |
|
sseq1 |
⊢ ( 𝑦 = 𝐵 → ( 𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ ) ) |
| 23 |
21 22
|
ralprg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⊆ ℂ ↔ ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) ) |
| 24 |
18 20 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⊆ ℂ ↔ ( 𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ ) ) ) |
| 25 |
14 15 24
|
mpbir2and |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⊆ ℂ ) |
| 26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) |
| 27 |
|
uniiun |
⊢ ∪ { 𝐴 , 𝐵 } = ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 |
| 28 |
|
uniprg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 29 |
18 20 28
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∪ { 𝐴 , 𝐵 } = ( 𝐴 ∪ 𝐵 ) ) |
| 30 |
27 29
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 = ( 𝐴 ∪ 𝐵 ) ) |
| 31 |
30
|
feq2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐹 : ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⟶ ℂ ↔ 𝐹 : ( 𝐴 ∪ 𝐵 ) ⟶ ℂ ) ) |
| 32 |
26 31
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐹 : ∪ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑦 ⟶ ℂ ) |
| 33 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → 𝐶 ∈ ℂ ) |
| 34 |
13 25 32 33
|
limciun |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝐹 limℂ 𝐶 ) = ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ) |
| 35 |
34
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ) ) |
| 36 |
|
reseq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝐴 ) ) |
| 37 |
36
|
oveq1d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) = ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ) |
| 38 |
37
|
eleq2d |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ) ) |
| 39 |
|
reseq2 |
⊢ ( 𝑦 = 𝐵 → ( 𝐹 ↾ 𝑦 ) = ( 𝐹 ↾ 𝐵 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( 𝑦 = 𝐵 → ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) = ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) |
| 41 |
40
|
eleq2d |
⊢ ( 𝑦 = 𝐵 → ( 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
| 42 |
38 41
|
ralprg |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ V ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 43 |
18 20 42
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 44 |
43
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) ) |
| 45 |
|
limccl |
⊢ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ⊆ ℂ |
| 46 |
45
|
sseli |
⊢ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) → 𝑥 ∈ ℂ ) |
| 47 |
46
|
adantr |
⊢ ( ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) → 𝑥 ∈ ℂ ) |
| 48 |
47
|
pm4.71ri |
⊢ ( ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 49 |
44 48
|
bitr4di |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 50 |
|
elriin |
⊢ ( 𝑥 ∈ ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ℂ ∧ ∀ 𝑦 ∈ { 𝐴 , 𝐵 } 𝑥 ∈ ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ) |
| 51 |
|
elin |
⊢ ( 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ↔ ( 𝑥 ∈ ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∧ 𝑥 ∈ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |
| 52 |
49 50 51
|
3bitr4g |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ( ℂ ∩ ∩ 𝑦 ∈ { 𝐴 , 𝐵 } ( ( 𝐹 ↾ 𝑦 ) limℂ 𝐶 ) ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 53 |
35 52
|
bitrd |
⊢ ( ( 𝜑 ∧ 𝐶 ∈ ℂ ) → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 54 |
53
|
ex |
⊢ ( 𝜑 → ( 𝐶 ∈ ℂ → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) ) |
| 55 |
6 11 54
|
pm5.21ndd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐹 limℂ 𝐶 ) ↔ 𝑥 ∈ ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) ) |
| 56 |
55
|
eqrdv |
⊢ ( 𝜑 → ( 𝐹 limℂ 𝐶 ) = ( ( ( 𝐹 ↾ 𝐴 ) limℂ 𝐶 ) ∩ ( ( 𝐹 ↾ 𝐵 ) limℂ 𝐶 ) ) ) |