Metamath Proof Explorer


Theorem limcvallem

Description: Lemma for ellimc . (Contributed by Mario Carneiro, 25-Dec-2016)

Ref Expression
Hypotheses limcval.j 𝐽 = ( 𝐾t ( 𝐴 ∪ { 𝐵 } ) )
limcval.k 𝐾 = ( TopOpen ‘ ℂfld )
limcvallem.g 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹𝑧 ) ) )
Assertion limcvallem ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) )

Proof

Step Hyp Ref Expression
1 limcval.j 𝐽 = ( 𝐾t ( 𝐴 ∪ { 𝐵 } ) )
2 limcval.k 𝐾 = ( TopOpen ‘ ℂfld )
3 limcvallem.g 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹𝑧 ) ) )
4 iftrue ( 𝑧 = 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹𝑧 ) ) = 𝐶 )
5 4 eleq1d ( 𝑧 = 𝐵 → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹𝑧 ) ) ∈ ℂ ↔ 𝐶 ∈ ℂ ) )
6 2 cnfldtopon 𝐾 ∈ ( TopOn ‘ ℂ )
7 simpl2 ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐴 ⊆ ℂ )
8 simpl3 ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐵 ∈ ℂ )
9 8 snssd ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → { 𝐵 } ⊆ ℂ )
10 7 9 unssd ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ )
11 resttopon ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) )
12 6 10 11 sylancr ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) )
13 1 12 eqeltrid ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) )
14 6 a1i ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐾 ∈ ( TopOn ‘ ℂ ) )
15 simpr ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) )
16 cnpf2 ( ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ )
17 13 14 15 16 syl3anc ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ )
18 3 fmpt ( ∀ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹𝑧 ) ) ∈ ℂ ↔ 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ )
19 17 18 sylibr ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ∀ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹𝑧 ) ) ∈ ℂ )
20 ssun2 { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } )
21 snssg ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) )
22 8 21 syl ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) )
23 20 22 mpbiri ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) )
24 5 19 23 rspcdva ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐶 ∈ ℂ )
25 24 ex ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) )