Step |
Hyp |
Ref |
Expression |
1 |
|
limcval.j |
⊢ 𝐽 = ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) |
2 |
|
limcval.k |
⊢ 𝐾 = ( TopOpen ‘ ℂfld ) |
3 |
|
limcvallem.g |
⊢ 𝐺 = ( 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) ↦ if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ) |
4 |
|
iftrue |
⊢ ( 𝑧 = 𝐵 → if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) = 𝐶 ) |
5 |
4
|
eleq1d |
⊢ ( 𝑧 = 𝐵 → ( if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ↔ 𝐶 ∈ ℂ ) ) |
6 |
2
|
cnfldtopon |
⊢ 𝐾 ∈ ( TopOn ‘ ℂ ) |
7 |
|
simpl2 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐴 ⊆ ℂ ) |
8 |
|
simpl3 |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐵 ∈ ℂ ) |
9 |
8
|
snssd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → { 𝐵 } ⊆ ℂ ) |
10 |
7 9
|
unssd |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) |
11 |
|
resttopon |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ ( 𝐴 ∪ { 𝐵 } ) ⊆ ℂ ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
12 |
6 10 11
|
sylancr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐾 ↾t ( 𝐴 ∪ { 𝐵 } ) ) ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
13 |
1 12
|
eqeltrid |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ) |
14 |
6
|
a1i |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐾 ∈ ( TopOn ‘ ℂ ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) |
16 |
|
cnpf2 |
⊢ ( ( 𝐽 ∈ ( TopOn ‘ ( 𝐴 ∪ { 𝐵 } ) ) ∧ 𝐾 ∈ ( TopOn ‘ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
17 |
13 14 15 16
|
syl3anc |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
18 |
3
|
fmpt |
⊢ ( ∀ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ↔ 𝐺 : ( 𝐴 ∪ { 𝐵 } ) ⟶ ℂ ) |
19 |
17 18
|
sylibr |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ∀ 𝑧 ∈ ( 𝐴 ∪ { 𝐵 } ) if ( 𝑧 = 𝐵 , 𝐶 , ( 𝐹 ‘ 𝑧 ) ) ∈ ℂ ) |
20 |
|
ssun2 |
⊢ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) |
21 |
|
snssg |
⊢ ( 𝐵 ∈ ℂ → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
22 |
8 21
|
syl |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → ( 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ↔ { 𝐵 } ⊆ ( 𝐴 ∪ { 𝐵 } ) ) ) |
23 |
20 22
|
mpbiri |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐵 ∈ ( 𝐴 ∪ { 𝐵 } ) ) |
24 |
5 19 23
|
rspcdva |
⊢ ( ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) ∧ 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) ) → 𝐶 ∈ ℂ ) |
25 |
24
|
ex |
⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝐴 ⊆ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐺 ∈ ( ( 𝐽 CnP 𝐾 ) ‘ 𝐵 ) → 𝐶 ∈ ℂ ) ) |