Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limelon | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
| 2 | elong | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) | |
| 3 | 1 2 | imbitrrid | ⊢ ( 𝐴 ∈ 𝐵 → ( Lim 𝐴 → 𝐴 ∈ On ) ) |
| 4 | 3 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |