Description: A limit ordinal class that is also a set is an ordinal number. (Contributed by NM, 26-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Assertion | limelon | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limord | ⊢ ( Lim 𝐴 → Ord 𝐴 ) | |
2 | elong | ⊢ ( 𝐴 ∈ 𝐵 → ( 𝐴 ∈ On ↔ Ord 𝐴 ) ) | |
3 | 1 2 | syl5ibr | ⊢ ( 𝐴 ∈ 𝐵 → ( Lim 𝐴 → 𝐴 ∈ On ) ) |
4 | 3 | imp | ⊢ ( ( 𝐴 ∈ 𝐵 ∧ Lim 𝐴 ) → 𝐴 ∈ On ) |