Step |
Hyp |
Ref |
Expression |
1 |
|
limenpsi.1 |
⊢ Lim 𝐴 |
2 |
|
difexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ∈ V ) |
3 |
|
limsuc |
⊢ ( Lim 𝐴 → ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴 ) ) |
4 |
1 3
|
ax-mp |
⊢ ( 𝑥 ∈ 𝐴 ↔ suc 𝑥 ∈ 𝐴 ) |
5 |
4
|
biimpi |
⊢ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ 𝐴 ) |
6 |
|
nsuceq0 |
⊢ suc 𝑥 ≠ ∅ |
7 |
|
eldifsn |
⊢ ( suc 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ↔ ( suc 𝑥 ∈ 𝐴 ∧ suc 𝑥 ≠ ∅ ) ) |
8 |
5 6 7
|
sylanblrc |
⊢ ( 𝑥 ∈ 𝐴 → suc 𝑥 ∈ ( 𝐴 ∖ { ∅ } ) ) |
9 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
10 |
1 9
|
ax-mp |
⊢ Ord 𝐴 |
11 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ On ) |
12 |
10 11
|
mpan |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ On ) |
13 |
|
ordelon |
⊢ ( ( Ord 𝐴 ∧ 𝑦 ∈ 𝐴 ) → 𝑦 ∈ On ) |
14 |
10 13
|
mpan |
⊢ ( 𝑦 ∈ 𝐴 → 𝑦 ∈ On ) |
15 |
|
suc11 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ On ) → ( suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦 ) ) |
16 |
12 14 15
|
syl2an |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴 ) → ( suc 𝑥 = suc 𝑦 ↔ 𝑥 = 𝑦 ) ) |
17 |
8 16
|
dom3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ( 𝐴 ∖ { ∅ } ) ∈ V ) → 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ) |
18 |
2 17
|
mpdan |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ) |
19 |
|
difss |
⊢ ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 |
20 |
|
ssdomg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ { ∅ } ) ⊆ 𝐴 → ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) ) |
21 |
19 20
|
mpi |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) |
22 |
|
sbth |
⊢ ( ( 𝐴 ≼ ( 𝐴 ∖ { ∅ } ) ∧ ( 𝐴 ∖ { ∅ } ) ≼ 𝐴 ) → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |
23 |
18 21 22
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |