| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limenpsi.1 | ⊢ Lim  𝐴 | 
						
							| 2 |  | difexg | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∖  { ∅ } )  ∈  V ) | 
						
							| 3 |  | limsuc | ⊢ ( Lim  𝐴  →  ( 𝑥  ∈  𝐴  ↔  suc  𝑥  ∈  𝐴 ) ) | 
						
							| 4 | 1 3 | ax-mp | ⊢ ( 𝑥  ∈  𝐴  ↔  suc  𝑥  ∈  𝐴 ) | 
						
							| 5 | 4 | biimpi | ⊢ ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  𝐴 ) | 
						
							| 6 |  | nsuceq0 | ⊢ suc  𝑥  ≠  ∅ | 
						
							| 7 |  | eldifsn | ⊢ ( suc  𝑥  ∈  ( 𝐴  ∖  { ∅ } )  ↔  ( suc  𝑥  ∈  𝐴  ∧  suc  𝑥  ≠  ∅ ) ) | 
						
							| 8 | 5 6 7 | sylanblrc | ⊢ ( 𝑥  ∈  𝐴  →  suc  𝑥  ∈  ( 𝐴  ∖  { ∅ } ) ) | 
						
							| 9 |  | limord | ⊢ ( Lim  𝐴  →  Ord  𝐴 ) | 
						
							| 10 | 1 9 | ax-mp | ⊢ Ord  𝐴 | 
						
							| 11 |  | ordelon | ⊢ ( ( Ord  𝐴  ∧  𝑥  ∈  𝐴 )  →  𝑥  ∈  On ) | 
						
							| 12 | 10 11 | mpan | ⊢ ( 𝑥  ∈  𝐴  →  𝑥  ∈  On ) | 
						
							| 13 |  | ordelon | ⊢ ( ( Ord  𝐴  ∧  𝑦  ∈  𝐴 )  →  𝑦  ∈  On ) | 
						
							| 14 | 10 13 | mpan | ⊢ ( 𝑦  ∈  𝐴  →  𝑦  ∈  On ) | 
						
							| 15 |  | suc11 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  On )  →  ( suc  𝑥  =  suc  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 16 | 12 14 15 | syl2an | ⊢ ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐴 )  →  ( suc  𝑥  =  suc  𝑦  ↔  𝑥  =  𝑦 ) ) | 
						
							| 17 | 8 16 | dom3 | ⊢ ( ( 𝐴  ∈  𝑉  ∧  ( 𝐴  ∖  { ∅ } )  ∈  V )  →  𝐴  ≼  ( 𝐴  ∖  { ∅ } ) ) | 
						
							| 18 | 2 17 | mpdan | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≼  ( 𝐴  ∖  { ∅ } ) ) | 
						
							| 19 |  | difss | ⊢ ( 𝐴  ∖  { ∅ } )  ⊆  𝐴 | 
						
							| 20 |  | ssdomg | ⊢ ( 𝐴  ∈  𝑉  →  ( ( 𝐴  ∖  { ∅ } )  ⊆  𝐴  →  ( 𝐴  ∖  { ∅ } )  ≼  𝐴 ) ) | 
						
							| 21 | 19 20 | mpi | ⊢ ( 𝐴  ∈  𝑉  →  ( 𝐴  ∖  { ∅ } )  ≼  𝐴 ) | 
						
							| 22 |  | sbth | ⊢ ( ( 𝐴  ≼  ( 𝐴  ∖  { ∅ } )  ∧  ( 𝐴  ∖  { ∅ } )  ≼  𝐴 )  →  𝐴  ≈  ( 𝐴  ∖  { ∅ } ) ) | 
						
							| 23 | 18 21 22 | syl2anc | ⊢ ( 𝐴  ∈  𝑉  →  𝐴  ≈  ( 𝐴  ∖  { ∅ } ) ) |