Step |
Hyp |
Ref |
Expression |
1 |
|
eleq1 |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( 𝐴 ∈ 𝑉 ↔ if ( Lim 𝐴 , 𝐴 , On ) ∈ 𝑉 ) ) |
2 |
|
id |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) ) |
3 |
|
suceq |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → suc 𝐴 = suc if ( Lim 𝐴 , 𝐴 , On ) ) |
4 |
2 3
|
breq12d |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( 𝐴 ≈ suc 𝐴 ↔ if ( Lim 𝐴 , 𝐴 , On ) ≈ suc if ( Lim 𝐴 , 𝐴 , On ) ) ) |
5 |
1 4
|
imbi12d |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) ↔ ( if ( Lim 𝐴 , 𝐴 , On ) ∈ 𝑉 → if ( Lim 𝐴 , 𝐴 , On ) ≈ suc if ( Lim 𝐴 , 𝐴 , On ) ) ) ) |
6 |
|
limeq |
⊢ ( 𝐴 = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim 𝐴 ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) ) |
7 |
|
limeq |
⊢ ( On = if ( Lim 𝐴 , 𝐴 , On ) → ( Lim On ↔ Lim if ( Lim 𝐴 , 𝐴 , On ) ) ) |
8 |
|
limon |
⊢ Lim On |
9 |
6 7 8
|
elimhyp |
⊢ Lim if ( Lim 𝐴 , 𝐴 , On ) |
10 |
9
|
limensuci |
⊢ ( if ( Lim 𝐴 , 𝐴 , On ) ∈ 𝑉 → if ( Lim 𝐴 , 𝐴 , On ) ≈ suc if ( Lim 𝐴 , 𝐴 , On ) ) |
11 |
5 10
|
dedth |
⊢ ( Lim 𝐴 → ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) ) |
12 |
11
|
impcom |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Lim 𝐴 ) → 𝐴 ≈ suc 𝐴 ) |