Step |
Hyp |
Ref |
Expression |
1 |
|
limensuci.1 |
⊢ Lim 𝐴 |
2 |
1
|
limenpsi |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ ( 𝐴 ∖ { ∅ } ) ) |
3 |
2
|
ensymd |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ) |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
|
en2sn |
⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → { ∅ } ≈ { 𝐴 } ) |
6 |
4 5
|
mpan |
⊢ ( 𝐴 ∈ 𝑉 → { ∅ } ≈ { 𝐴 } ) |
7 |
|
disjdifr |
⊢ ( ( 𝐴 ∖ { ∅ } ) ∩ { ∅ } ) = ∅ |
8 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
9 |
1 8
|
ax-mp |
⊢ Ord 𝐴 |
10 |
|
ordirr |
⊢ ( Ord 𝐴 → ¬ 𝐴 ∈ 𝐴 ) |
11 |
9 10
|
ax-mp |
⊢ ¬ 𝐴 ∈ 𝐴 |
12 |
|
disjsn |
⊢ ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴 ∈ 𝐴 ) |
13 |
11 12
|
mpbir |
⊢ ( 𝐴 ∩ { 𝐴 } ) = ∅ |
14 |
|
unen |
⊢ ( ( ( ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ∧ { ∅ } ≈ { 𝐴 } ) ∧ ( ( ( 𝐴 ∖ { ∅ } ) ∩ { ∅ } ) = ∅ ∧ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) ) → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) |
15 |
7 13 14
|
mpanr12 |
⊢ ( ( ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ∧ { ∅ } ≈ { 𝐴 } ) → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) |
16 |
3 6 15
|
syl2anc |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) ) |
17 |
|
0ellim |
⊢ ( Lim 𝐴 → ∅ ∈ 𝐴 ) |
18 |
1 17
|
ax-mp |
⊢ ∅ ∈ 𝐴 |
19 |
4
|
snss |
⊢ ( ∅ ∈ 𝐴 ↔ { ∅ } ⊆ 𝐴 ) |
20 |
18 19
|
mpbi |
⊢ { ∅ } ⊆ 𝐴 |
21 |
|
undif |
⊢ ( { ∅ } ⊆ 𝐴 ↔ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = 𝐴 ) |
22 |
20 21
|
mpbi |
⊢ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = 𝐴 |
23 |
|
uncom |
⊢ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) |
24 |
22 23
|
eqtr3i |
⊢ 𝐴 = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) |
25 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
26 |
16 24 25
|
3brtr4g |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴 ) |