Metamath Proof Explorer


Theorem limensuci

Description: A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003)

Ref Expression
Hypothesis limensuci.1 Lim 𝐴
Assertion limensuci ( 𝐴𝑉𝐴 ≈ suc 𝐴 )

Proof

Step Hyp Ref Expression
1 limensuci.1 Lim 𝐴
2 1 limenpsi ( 𝐴𝑉𝐴 ≈ ( 𝐴 ∖ { ∅ } ) )
3 2 ensymd ( 𝐴𝑉 → ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 )
4 0ex ∅ ∈ V
5 en2sn ( ( ∅ ∈ V ∧ 𝐴𝑉 ) → { ∅ } ≈ { 𝐴 } )
6 4 5 mpan ( 𝐴𝑉 → { ∅ } ≈ { 𝐴 } )
7 disjdifr ( ( 𝐴 ∖ { ∅ } ) ∩ { ∅ } ) = ∅
8 limord ( Lim 𝐴 → Ord 𝐴 )
9 1 8 ax-mp Ord 𝐴
10 ordirr ( Ord 𝐴 → ¬ 𝐴𝐴 )
11 9 10 ax-mp ¬ 𝐴𝐴
12 disjsn ( ( 𝐴 ∩ { 𝐴 } ) = ∅ ↔ ¬ 𝐴𝐴 )
13 11 12 mpbir ( 𝐴 ∩ { 𝐴 } ) = ∅
14 unen ( ( ( ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ∧ { ∅ } ≈ { 𝐴 } ) ∧ ( ( ( 𝐴 ∖ { ∅ } ) ∩ { ∅ } ) = ∅ ∧ ( 𝐴 ∩ { 𝐴 } ) = ∅ ) ) → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) )
15 7 13 14 mpanr12 ( ( ( 𝐴 ∖ { ∅ } ) ≈ 𝐴 ∧ { ∅ } ≈ { 𝐴 } ) → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) )
16 3 6 15 syl2anc ( 𝐴𝑉 → ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } ) ≈ ( 𝐴 ∪ { 𝐴 } ) )
17 0ellim ( Lim 𝐴 → ∅ ∈ 𝐴 )
18 1 17 ax-mp ∅ ∈ 𝐴
19 4 snss ( ∅ ∈ 𝐴 ↔ { ∅ } ⊆ 𝐴 )
20 18 19 mpbi { ∅ } ⊆ 𝐴
21 undif ( { ∅ } ⊆ 𝐴 ↔ ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = 𝐴 )
22 20 21 mpbi ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = 𝐴
23 uncom ( { ∅ } ∪ ( 𝐴 ∖ { ∅ } ) ) = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } )
24 22 23 eqtr3i 𝐴 = ( ( 𝐴 ∖ { ∅ } ) ∪ { ∅ } )
25 df-suc suc 𝐴 = ( 𝐴 ∪ { 𝐴 } )
26 16 24 25 3brtr4g ( 𝐴𝑉𝐴 ≈ suc 𝐴 )