Description: Equality theorem for the limit predicate. (Contributed by NM, 22-Apr-1994) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | limeq | ⊢ ( 𝐴 = 𝐵 → ( Lim 𝐴 ↔ Lim 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordeq | ⊢ ( 𝐴 = 𝐵 → ( Ord 𝐴 ↔ Ord 𝐵 ) ) | |
2 | neeq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ≠ ∅ ↔ 𝐵 ≠ ∅ ) ) | |
3 | id | ⊢ ( 𝐴 = 𝐵 → 𝐴 = 𝐵 ) | |
4 | unieq | ⊢ ( 𝐴 = 𝐵 → ∪ 𝐴 = ∪ 𝐵 ) | |
5 | 3 4 | eqeq12d | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 = ∪ 𝐴 ↔ 𝐵 = ∪ 𝐵 ) ) |
6 | 1 2 5 | 3anbi123d | ⊢ ( 𝐴 = 𝐵 → ( ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ↔ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) ) |
7 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
8 | df-lim | ⊢ ( Lim 𝐵 ↔ ( Ord 𝐵 ∧ 𝐵 ≠ ∅ ∧ 𝐵 = ∪ 𝐵 ) ) | |
9 | 6 7 8 | 3bitr4g | ⊢ ( 𝐴 = 𝐵 → ( Lim 𝐴 ↔ Lim 𝐵 ) ) |