| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							liminfgelimsup.1 | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							liminfgelimsup.2 | 
							⊢ ( 𝜑  →  ∀ 𝑘  ∈  ℝ ∃ 𝑗  ∈  ( 𝑘 [,) +∞ ) ( ( 𝐹  “  ( 𝑗 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ )  | 
						
						
							| 3 | 
							
								1
							 | 
							liminfcld | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  →  ( lim inf ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 5 | 
							
								1
							 | 
							limsupcld | 
							⊢ ( 𝜑  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 7 | 
							
								1 2
							 | 
							liminflelimsup | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ≤  ( lim sup ‘ 𝐹 ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  →  ( lim inf ‘ 𝐹 )  ≤  ( lim sup ‘ 𝐹 ) )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  →  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 10 | 
							
								4 6 8 9
							 | 
							xrletrid | 
							⊢ ( ( 𝜑  ∧  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  | 
						
						
							| 11 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 12 | 
							
								
							 | 
							id | 
							⊢ ( ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  →  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eqcomd | 
							⊢ ( ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 )  →  ( lim sup ‘ 𝐹 )  =  ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  →  ( lim sup ‘ 𝐹 )  =  ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							xreqled | 
							⊢ ( ( 𝜑  ∧  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) )  →  ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							impbida | 
							⊢ ( 𝜑  →  ( ( lim sup ‘ 𝐹 )  ≤  ( lim inf ‘ 𝐹 )  ↔  ( lim inf ‘ 𝐹 )  =  ( lim sup ‘ 𝐹 ) ) )  |