| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							liminflbuz2.1 | 
							⊢ Ⅎ 𝑗 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							liminflbuz2.2 | 
							⊢ Ⅎ 𝑗 𝐹  | 
						
						
							| 3 | 
							
								
							 | 
							liminflbuz2.3 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 4 | 
							
								
							 | 
							liminflbuz2.4 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							liminflbuz2.5 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 6 | 
							
								
							 | 
							liminflbuz2.6 | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ≠  -∞ )  | 
						
						
							| 7 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑗 𝑘  ∈  𝑍  | 
						
						
							| 8 | 
							
								1 7
							 | 
							nfan | 
							⊢ Ⅎ 𝑗 ( 𝜑  ∧  𝑘  ∈  𝑍 )  | 
						
						
							| 9 | 
							
								
							 | 
							simpll | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝜑 )  | 
						
						
							| 10 | 
							
								4
							 | 
							uztrn2 | 
							⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 )  | 
						
						
							| 11 | 
							
								10
							 | 
							adantll | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 )  | 
						
						
							| 12 | 
							
								5
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* )  | 
						
						
							| 13 | 
							
								12
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ∈  ℝ* )  | 
						
						
							| 14 | 
							
								
							 | 
							mnfxr | 
							⊢ -∞  ∈  ℝ*  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  -∞  ∈  ℝ* )  | 
						
						
							| 16 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 17 | 
							
								13 15 16
							 | 
							xrnltled | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  ≤  -∞ )  | 
						
						
							| 18 | 
							
								
							 | 
							xlemnf | 
							⊢ ( ( 𝐹 ‘ 𝑗 )  ∈  ℝ*  →  ( ( 𝐹 ‘ 𝑗 )  ≤  -∞  ↔  ( 𝐹 ‘ 𝑗 )  =  -∞ ) )  | 
						
						
							| 19 | 
							
								13 18
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( ( 𝐹 ‘ 𝑗 )  ≤  -∞  ↔  ( 𝐹 ‘ 𝑗 )  =  -∞ ) )  | 
						
						
							| 20 | 
							
								17 19
							 | 
							mpbid | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ( 𝐹 ‘ 𝑗 )  =  -∞ )  | 
						
						
							| 21 | 
							
								
							 | 
							xnegeq | 
							⊢ ( ( 𝐹 ‘ 𝑗 )  =  -∞  →  -𝑒 ( 𝐹 ‘ 𝑗 )  =  -𝑒 -∞ )  | 
						
						
							| 22 | 
							
								
							 | 
							xnegmnf | 
							⊢ -𝑒 -∞  =  +∞  | 
						
						
							| 23 | 
							
								21 22
							 | 
							eqtrdi | 
							⊢ ( ( 𝐹 ‘ 𝑗 )  =  -∞  →  -𝑒 ( 𝐹 ‘ 𝑗 )  =  +∞ )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  -𝑒 ( 𝐹 ‘ 𝑗 )  =  +∞ )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  -𝑒 ( 𝐹 ‘ 𝑗 )  =  +∞ )  | 
						
						
							| 26 | 
							
								
							 | 
							neneq | 
							⊢ ( -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞  →  ¬  -𝑒 ( 𝐹 ‘ 𝑗 )  =  +∞ )  | 
						
						
							| 27 | 
							
								26
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  ∧  ¬  -∞  <  ( 𝐹 ‘ 𝑗 ) )  →  ¬  -𝑒 ( 𝐹 ‘ 𝑗 )  =  +∞ )  | 
						
						
							| 28 | 
							
								25 27
							 | 
							condan | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  →  -∞  <  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 29 | 
							
								28
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞  →  -∞  <  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 30 | 
							
								9 11 29
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞  →  -∞  <  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 31 | 
							
								8 30
							 | 
							ralimdaa | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -∞  <  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -∞  <  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 33 | 
							
								12
							 | 
							xnegcld | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  ℝ* )  | 
						
						
							| 34 | 
							
								33
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  ℝ* )  | 
						
						
							| 35 | 
							
								
							 | 
							pnfxr | 
							⊢ +∞  ∈  ℝ*  | 
						
						
							| 36 | 
							
								35
							 | 
							a1i | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  +∞  ∈  ℝ* )  | 
						
						
							| 37 | 
							
								
							 | 
							eqidd | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 38 | 
							
								37 33
							 | 
							fvmpt2d | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							adantr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  | 
						
						
							| 41 | 
							
								39 40
							 | 
							eqbrtrrd | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  -𝑒 ( 𝐹 ‘ 𝑗 )  <  +∞ )  | 
						
						
							| 42 | 
							
								34 36 41
							 | 
							xrltned | 
							⊢ ( ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  ∧  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  | 
						
						
							| 43 | 
							
								42
							 | 
							ex | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞  →  -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ ) )  | 
						
						
							| 44 | 
							
								9 11 43
							 | 
							syl2anc | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞  →  -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ ) )  | 
						
						
							| 45 | 
							
								8 44
							 | 
							ralimdaa | 
							⊢ ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							imp | 
							⊢ ( ( ( 𝜑  ∧  𝑘  ∈  𝑍 )  ∧  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  | 
						
						
							| 47 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑗 ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 48 | 
							
								1 33
							 | 
							fmptd2f | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℝ* )  | 
						
						
							| 49 | 
							
								4
							 | 
							fvexi | 
							⊢ 𝑍  ∈  V  | 
						
						
							| 50 | 
							
								49
							 | 
							a1i | 
							⊢ ( 𝜑  →  𝑍  ∈  V )  | 
						
						
							| 51 | 
							
								5 50
							 | 
							fexd | 
							⊢ ( 𝜑  →  𝐹  ∈  V )  | 
						
						
							| 52 | 
							
								51
							 | 
							liminfcld | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 53 | 
							
								52
							 | 
							xnegnegd | 
							⊢ ( 𝜑  →  -𝑒 -𝑒 ( lim inf ‘ 𝐹 )  =  ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 54 | 
							
								1 2 3 4 5
							 | 
							liminfvaluz3 | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							eqtr2d | 
							⊢ ( 𝜑  →  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 56 | 
							
								50
							 | 
							mptexd | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  ∈  V )  | 
						
						
							| 57 | 
							
								56
							 | 
							limsupcld | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ* )  | 
						
						
							| 58 | 
							
								52
							 | 
							xnegcld | 
							⊢ ( 𝜑  →  -𝑒 ( lim inf ‘ 𝐹 )  ∈  ℝ* )  | 
						
						
							| 59 | 
							
								
							 | 
							xneg11 | 
							⊢ ( ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ*  ∧  -𝑒 ( lim inf ‘ 𝐹 )  ∈  ℝ* )  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -𝑒 ( lim inf ‘ 𝐹 )  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 ( lim inf ‘ 𝐹 ) ) )  | 
						
						
							| 60 | 
							
								57 58 59
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -𝑒 ( lim inf ‘ 𝐹 )  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 ( lim inf ‘ 𝐹 ) ) )  | 
						
						
							| 61 | 
							
								55 60
							 | 
							mpbid | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 62 | 
							
								
							 | 
							nne | 
							⊢ ( ¬  -𝑒 ( lim inf ‘ 𝐹 )  ≠  +∞  ↔  -𝑒 ( lim inf ‘ 𝐹 )  =  +∞ )  | 
						
						
							| 63 | 
							
								53
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  -𝑒 ( lim inf ‘ 𝐹 )  =  +∞ )  →  ( lim inf ‘ 𝐹 )  =  -𝑒 -𝑒 ( lim inf ‘ 𝐹 ) )  | 
						
						
							| 65 | 
							
								
							 | 
							xnegeq | 
							⊢ ( -𝑒 ( lim inf ‘ 𝐹 )  =  +∞  →  -𝑒 -𝑒 ( lim inf ‘ 𝐹 )  =  -𝑒 +∞ )  | 
						
						
							| 66 | 
							
								65
							 | 
							adantl | 
							⊢ ( ( 𝜑  ∧  -𝑒 ( lim inf ‘ 𝐹 )  =  +∞ )  →  -𝑒 -𝑒 ( lim inf ‘ 𝐹 )  =  -𝑒 +∞ )  | 
						
						
							| 67 | 
							
								
							 | 
							xnegpnf | 
							⊢ -𝑒 +∞  =  -∞  | 
						
						
							| 68 | 
							
								67
							 | 
							a1i | 
							⊢ ( ( 𝜑  ∧  -𝑒 ( lim inf ‘ 𝐹 )  =  +∞ )  →  -𝑒 +∞  =  -∞ )  | 
						
						
							| 69 | 
							
								64 66 68
							 | 
							3eqtrd | 
							⊢ ( ( 𝜑  ∧  -𝑒 ( lim inf ‘ 𝐹 )  =  +∞ )  →  ( lim inf ‘ 𝐹 )  =  -∞ )  | 
						
						
							| 70 | 
							
								62 69
							 | 
							sylan2b | 
							⊢ ( ( 𝜑  ∧  ¬  -𝑒 ( lim inf ‘ 𝐹 )  ≠  +∞ )  →  ( lim inf ‘ 𝐹 )  =  -∞ )  | 
						
						
							| 71 | 
							
								6
							 | 
							neneqd | 
							⊢ ( 𝜑  →  ¬  ( lim inf ‘ 𝐹 )  =  -∞ )  | 
						
						
							| 72 | 
							
								71
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  ¬  -𝑒 ( lim inf ‘ 𝐹 )  ≠  +∞ )  →  ¬  ( lim inf ‘ 𝐹 )  =  -∞ )  | 
						
						
							| 73 | 
							
								70 72
							 | 
							condan | 
							⊢ ( 𝜑  →  -𝑒 ( lim inf ‘ 𝐹 )  ≠  +∞ )  | 
						
						
							| 74 | 
							
								61 73
							 | 
							eqnetrd | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ≠  +∞ )  | 
						
						
							| 75 | 
							
								1 47 3 4 48 74
							 | 
							limsupubuz2 | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  <  +∞ )  | 
						
						
							| 76 | 
							
								46 75
							 | 
							reximddv3 | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≠  +∞ )  | 
						
						
							| 77 | 
							
								32 76
							 | 
							reximddv3 | 
							⊢ ( 𝜑  →  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -∞  <  ( 𝐹 ‘ 𝑗 ) )  |