| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							liminfpnfuz.1 | 
							⊢ Ⅎ 𝑗 𝐹  | 
						
						
							| 2 | 
							
								
							 | 
							liminfpnfuz.2 | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							liminfpnfuz.3 | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							liminfpnfuz.4 | 
							⊢ ( 𝜑  →  𝐹 : 𝑍 ⟶ ℝ* )  | 
						
						
							| 5 | 
							
								
							 | 
							nfv | 
							⊢ Ⅎ 𝑙 𝜑  | 
						
						
							| 6 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑙 𝐹  | 
						
						
							| 7 | 
							
								5 6 2 3 4
							 | 
							liminfvaluz3 | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  -𝑒 ( lim sup ‘ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 𝑙  | 
						
						
							| 9 | 
							
								1 8
							 | 
							nffv | 
							⊢ Ⅎ 𝑗 ( 𝐹 ‘ 𝑙 )  | 
						
						
							| 10 | 
							
								9
							 | 
							nfxneg | 
							⊢ Ⅎ 𝑗 -𝑒 ( 𝐹 ‘ 𝑙 )  | 
						
						
							| 11 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑙 -𝑒 ( 𝐹 ‘ 𝑗 )  | 
						
						
							| 12 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑙  =  𝑗  →  ( 𝐹 ‘ 𝑙 )  =  ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							xnegeqd | 
							⊢ ( 𝑙  =  𝑗  →  -𝑒 ( 𝐹 ‘ 𝑙 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 14 | 
							
								10 11 13
							 | 
							cbvmpt | 
							⊢ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) )  =  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							fveq2i | 
							⊢ ( lim sup ‘ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) )  =  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							xnegeqi | 
							⊢ -𝑒 ( lim sup ‘ ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) ) )  =  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 17 | 
							
								7 16
							 | 
							eqtrdi | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							eqeq1d | 
							⊢ ( 𝜑  →  ( ( lim inf ‘ 𝐹 )  =  +∞  ↔  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  +∞ ) )  | 
						
						
							| 19 | 
							
								
							 | 
							xnegmnf | 
							⊢ -𝑒 -∞  =  +∞  | 
						
						
							| 20 | 
							
								19
							 | 
							eqcomi | 
							⊢ +∞  =  -𝑒 -∞  | 
						
						
							| 21 | 
							
								20
							 | 
							a1i | 
							⊢ ( 𝜑  →  +∞  =  -𝑒 -∞ )  | 
						
						
							| 22 | 
							
								21
							 | 
							eqeq2d | 
							⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  +∞  ↔  -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -∞ ) )  | 
						
						
							| 23 | 
							
								3
							 | 
							fvexi | 
							⊢ 𝑍  ∈  V  | 
						
						
							| 24 | 
							
								23
							 | 
							mptex | 
							⊢ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  ∈  V  | 
						
						
							| 25 | 
							
								24
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  ∈  V )  | 
						
						
							| 26 | 
							
								25
							 | 
							limsupcld | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ* )  | 
						
						
							| 27 | 
							
								
							 | 
							mnfxr | 
							⊢ -∞  ∈  ℝ*  | 
						
						
							| 28 | 
							
								
							 | 
							xneg11 | 
							⊢ ( ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  ∈  ℝ*  ∧  -∞  ∈  ℝ* )  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -∞  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞ ) )  | 
						
						
							| 29 | 
							
								26 27 28
							 | 
							sylancl | 
							⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -𝑒 -∞  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞ ) )  | 
						
						
							| 30 | 
							
								22 29
							 | 
							bitrd | 
							⊢ ( 𝜑  →  ( -𝑒 ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  +∞  ↔  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞ ) )  | 
						
						
							| 31 | 
							
								3
							 | 
							uztrn2 | 
							⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  𝑗  ∈  𝑍 )  | 
						
						
							| 32 | 
							
								
							 | 
							xnegex | 
							⊢ -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  V  | 
						
						
							| 33 | 
							
								
							 | 
							fvmpt4 | 
							⊢ ( ( 𝑗  ∈  𝑍  ∧  -𝑒 ( 𝐹 ‘ 𝑗 )  ∈  V )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 34 | 
							
								31 32 33
							 | 
							sylancl | 
							⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  =  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							breq1d | 
							⊢ ( ( 𝑘  ∈  𝑍  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) )  →  ( ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							ralbidva | 
							⊢ ( 𝑘  ∈  𝑍  →  ( ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							rexbiia | 
							⊢ ( ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  | 
						
						
							| 38 | 
							
								37
							 | 
							ralbii | 
							⊢ ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 )  | 
						
						
							| 39 | 
							
								38
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 40 | 
							
								
							 | 
							nfmpt1 | 
							⊢ Ⅎ 𝑗 ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  | 
						
						
							| 41 | 
							
								4
							 | 
							ffvelcdmda | 
							⊢ ( ( 𝜑  ∧  𝑙  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  | 
						
						
							| 42 | 
							
								41
							 | 
							xnegcld | 
							⊢ ( ( 𝜑  ∧  𝑙  ∈  𝑍 )  →  -𝑒 ( 𝐹 ‘ 𝑙 )  ∈  ℝ* )  | 
						
						
							| 43 | 
							
								14
							 | 
							eqcomi | 
							⊢ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) )  =  ( 𝑙  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑙 ) )  | 
						
						
							| 44 | 
							
								42 43
							 | 
							fmptd | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) : 𝑍 ⟶ ℝ* )  | 
						
						
							| 45 | 
							
								40 2 3 44
							 | 
							limsupmnfuz | 
							⊢ ( 𝜑  →  ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) ( ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 46 | 
							
								1 3 4
							 | 
							xlimpnfxnegmnf | 
							⊢ ( 𝜑  →  ( ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 )  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) -𝑒 ( 𝐹 ‘ 𝑗 )  ≤  𝑥 ) )  | 
						
						
							| 47 | 
							
								39 45 46
							 | 
							3bitr4d | 
							⊢ ( 𝜑  →  ( ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  -𝑒 ( 𝐹 ‘ 𝑗 ) ) )  =  -∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 ) ) )  | 
						
						
							| 48 | 
							
								18 30 47
							 | 
							3bitrd | 
							⊢ ( 𝜑  →  ( ( lim inf ‘ 𝐹 )  =  +∞  ↔  ∀ 𝑥  ∈  ℝ ∃ 𝑘  ∈  𝑍 ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝑘 ) 𝑥  ≤  ( 𝐹 ‘ 𝑗 ) ) )  |