| Step |
Hyp |
Ref |
Expression |
| 1 |
|
liminfresicompt.1 |
⊢ ( 𝜑 → 𝑀 ∈ ℝ ) |
| 2 |
|
liminfresicompt.2 |
⊢ 𝑍 = ( 𝑀 [,) +∞ ) |
| 3 |
|
liminfresicompt.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
resmpt3 |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑍 ) = ( 𝑥 ∈ ( 𝐴 ∩ 𝑍 ) ↦ 𝐵 ) |
| 5 |
4
|
eqcomi |
⊢ ( 𝑥 ∈ ( 𝐴 ∩ 𝑍 ) ↦ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑍 ) |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → ( 𝑥 ∈ ( 𝐴 ∩ 𝑍 ) ↦ 𝐵 ) = ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑍 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ 𝑍 ) ↦ 𝐵 ) ) = ( lim inf ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑍 ) ) ) |
| 8 |
3
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ∈ V ) |
| 9 |
1 2 8
|
liminfresico |
⊢ ( 𝜑 → ( lim inf ‘ ( ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ↾ 𝑍 ) ) = ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |
| 10 |
7 9
|
eqtrd |
⊢ ( 𝜑 → ( lim inf ‘ ( 𝑥 ∈ ( 𝐴 ∩ 𝑍 ) ↦ 𝐵 ) ) = ( lim inf ‘ ( 𝑥 ∈ 𝐴 ↦ 𝐵 ) ) ) |