| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							liminfresxr.1 | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 2 | 
							
								
							 | 
							liminfresxr.2 | 
							⊢ ( 𝜑  →  Fun  𝐹 )  | 
						
						
							| 3 | 
							
								
							 | 
							liminfresxr.3 | 
							⊢ 𝐴  =  ( ◡ 𝐹  “  ℝ* )  | 
						
						
							| 4 | 
							
								
							 | 
							resimass | 
							⊢ ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ⊆  ( 𝐹  “  ( 𝑘 [,) +∞ ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ⊆  ( 𝐹  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							ssrind | 
							⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ⊆  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  | 
						
						
							| 7 | 
							
								2
							 | 
							funfnd | 
							⊢ ( 𝜑  →  𝐹  Fn  dom  𝐹 )  | 
						
						
							| 8 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  →  𝑦  ∈  ( 𝐹  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fvelima2 | 
							⊢ ( ( 𝐹  Fn  dom  𝐹  ∧  𝑦  ∈  ( 𝐹  “  ( 𝑘 [,) +∞ ) ) )  →  ∃ 𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							syl2an | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  →  ∃ 𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 11 | 
							
								
							 | 
							elinel1 | 
							⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  →  𝑥  ∈  dom  𝐹 )  | 
						
						
							| 12 | 
							
								11
							 | 
							3ad2ant2 | 
							⊢ ( ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  dom  𝐹 )  | 
						
						
							| 13 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 14 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 15 | 
							
								14
							 | 
							adantr | 
							⊢ ( ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑦  ∈  ℝ* )  | 
						
						
							| 16 | 
							
								13 15
							 | 
							eqeltrd | 
							⊢ ( ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* )  | 
						
						
							| 17 | 
							
								16
							 | 
							3adant2 | 
							⊢ ( ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* )  | 
						
						
							| 18 | 
							
								12 17
							 | 
							jca | 
							⊢ ( ( 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) )  | 
						
						
							| 19 | 
							
								18
							 | 
							3adant1l | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp1l | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝜑 )  | 
						
						
							| 21 | 
							
								
							 | 
							elpreima | 
							⊢ ( 𝐹  Fn  dom  𝐹  →  ( 𝑥  ∈  ( ◡ 𝐹  “  ℝ* )  ↔  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) ) )  | 
						
						
							| 22 | 
							
								7 21
							 | 
							syl | 
							⊢ ( 𝜑  →  ( 𝑥  ∈  ( ◡ 𝐹  “  ℝ* )  ↔  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							syl | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝑥  ∈  ( ◡ 𝐹  “  ℝ* )  ↔  ( 𝑥  ∈  dom  𝐹  ∧  ( 𝐹 ‘ 𝑥 )  ∈  ℝ* ) ) )  | 
						
						
							| 24 | 
							
								19 23
							 | 
							mpbird | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  ( ◡ 𝐹  “  ℝ* ) )  | 
						
						
							| 25 | 
							
								24 3
							 | 
							eleqtrrdi | 
							⊢ ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 26 | 
							
								25
							 | 
							3expa | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  𝐴 )  | 
						
						
							| 27 | 
							
								26
							 | 
							fvresd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑥 ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simpr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  | 
						
						
							| 29 | 
							
								27 28
							 | 
							eqtr2d | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑦  =  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 ) )  | 
						
						
							| 30 | 
							
								
							 | 
							simplll | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝜑 )  | 
						
						
							| 31 | 
							
								2
							 | 
							funresd | 
							⊢ ( 𝜑  →  Fun  ( 𝐹  ↾  𝐴 ) )  | 
						
						
							| 32 | 
							
								30 31
							 | 
							syl | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  Fun  ( 𝐹  ↾  𝐴 ) )  | 
						
						
							| 33 | 
							
								11
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  dom  𝐹 )  | 
						
						
							| 34 | 
							
								26 33
							 | 
							elind | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  ( 𝐴  ∩  dom  𝐹 ) )  | 
						
						
							| 35 | 
							
								
							 | 
							dmres | 
							⊢ dom  ( 𝐹  ↾  𝐴 )  =  ( 𝐴  ∩  dom  𝐹 )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							eleqtrrdi | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  dom  ( 𝐹  ↾  𝐴 ) )  | 
						
						
							| 37 | 
							
								32 36
							 | 
							jca | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( Fun  ( 𝐹  ↾  𝐴 )  ∧  𝑥  ∈  dom  ( 𝐹  ↾  𝐴 ) ) )  | 
						
						
							| 38 | 
							
								
							 | 
							elinel2 | 
							⊢ ( 𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) )  →  𝑥  ∈  ( 𝑘 [,) +∞ ) )  | 
						
						
							| 39 | 
							
								38
							 | 
							ad2antlr | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑥  ∈  ( 𝑘 [,) +∞ ) )  | 
						
						
							| 40 | 
							
								
							 | 
							funfvima | 
							⊢ ( ( Fun  ( 𝐹  ↾  𝐴 )  ∧  𝑥  ∈  dom  ( 𝐹  ↾  𝐴 ) )  →  ( 𝑥  ∈  ( 𝑘 [,) +∞ )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) ) )  | 
						
						
							| 41 | 
							
								37 39 40
							 | 
							sylc | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  ( ( 𝐹  ↾  𝐴 ) ‘ 𝑥 )  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 42 | 
							
								29 41
							 | 
							eqeltrd | 
							⊢ ( ( ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  ∧  𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) )  ∧  ( 𝐹 ‘ 𝑥 )  =  𝑦 )  →  𝑦  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							rexlimdva2 | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  →  ( ∃ 𝑥  ∈  ( dom  𝐹  ∩  ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑥 )  =  𝑦  →  𝑦  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) ) )  | 
						
						
							| 44 | 
							
								10 43
							 | 
							mpd | 
							⊢ ( ( 𝜑  ∧  𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  →  𝑦  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 45 | 
							
								44
							 | 
							ralrimiva | 
							⊢ ( 𝜑  →  ∀ 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) 𝑦  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 46 | 
							
								
							 | 
							dfss3 | 
							⊢ ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ⊆  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ↔  ∀ 𝑦  ∈  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) 𝑦  ∈  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 47 | 
							
								45 46
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ⊆  ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) ) )  | 
						
						
							| 48 | 
							
								
							 | 
							inss2 | 
							⊢ ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ⊆  ℝ*  | 
						
						
							| 49 | 
							
								48
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ⊆  ℝ* )  | 
						
						
							| 50 | 
							
								47 49
							 | 
							ssind | 
							⊢ ( 𝜑  →  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  ⊆  ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  | 
						
						
							| 51 | 
							
								6 50
							 | 
							eqssd | 
							⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* )  =  ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							infeq1d | 
							⊢ ( 𝜑  →  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  =  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							mpteq2dv | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  =  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							rneqd | 
							⊢ ( 𝜑  →  ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  =  ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							supeq1d | 
							⊢ ( 𝜑  →  sup ( ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 56 | 
							
								1
							 | 
							resexd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝐴 )  ∈  V )  | 
						
						
							| 57 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  =  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  | 
						
						
							| 58 | 
							
								57
							 | 
							liminfval | 
							⊢ ( ( 𝐹  ↾  𝐴 )  ∈  V  →  ( lim inf ‘ ( 𝐹  ↾  𝐴 ) )  =  sup ( ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 59 | 
							
								56 58
							 | 
							syl | 
							⊢ ( 𝜑  →  ( lim inf ‘ ( 𝐹  ↾  𝐴 ) )  =  sup ( ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( ( 𝐹  ↾  𝐴 )  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 60 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  =  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							liminfval | 
							⊢ ( 𝐹  ∈  𝑉  →  ( lim inf ‘ 𝐹 )  =  sup ( ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 62 | 
							
								1 61
							 | 
							syl | 
							⊢ ( 𝜑  →  ( lim inf ‘ 𝐹 )  =  sup ( ran  ( 𝑘  ∈  ℝ  ↦  inf ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 63 | 
							
								55 59 62
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( lim inf ‘ ( 𝐹  ↾  𝐴 ) )  =  ( lim inf ‘ 𝐹 ) )  |