Description: The inferior limit of a set F . (Contributed by Glauco Siliprandi, 2-Jan-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | liminfvald.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| liminfvald.2 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | ||
| Assertion | liminfvald | ⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | liminfvald.1 | ⊢ ( 𝜑 → 𝐹 ∈ 𝑉 ) | |
| 2 | liminfvald.2 | ⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ inf ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) | |
| 3 | 2 | liminfval | ⊢ ( 𝐹 ∈ 𝑉 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( lim inf ‘ 𝐹 ) = sup ( ran 𝐺 , ℝ* , < ) ) |