Step |
Hyp |
Ref |
Expression |
1 |
|
ordom |
⊢ Ord ω |
2 |
|
ordeleqon |
⊢ ( Ord ω ↔ ( ω ∈ On ∨ ω = On ) ) |
3 |
|
ordirr |
⊢ ( Ord ω → ¬ ω ∈ ω ) |
4 |
1 3
|
ax-mp |
⊢ ¬ ω ∈ ω |
5 |
|
elom |
⊢ ( ω ∈ ω ↔ ( ω ∈ On ∧ ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) ) |
6 |
5
|
baib |
⊢ ( ω ∈ On → ( ω ∈ ω ↔ ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) ) |
7 |
4 6
|
mtbii |
⊢ ( ω ∈ On → ¬ ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) |
8 |
|
limomss |
⊢ ( Lim 𝑥 → ω ⊆ 𝑥 ) |
9 |
|
limord |
⊢ ( Lim 𝑥 → Ord 𝑥 ) |
10 |
|
ordsseleq |
⊢ ( ( Ord ω ∧ Ord 𝑥 ) → ( ω ⊆ 𝑥 ↔ ( ω ∈ 𝑥 ∨ ω = 𝑥 ) ) ) |
11 |
1 9 10
|
sylancr |
⊢ ( Lim 𝑥 → ( ω ⊆ 𝑥 ↔ ( ω ∈ 𝑥 ∨ ω = 𝑥 ) ) ) |
12 |
8 11
|
mpbid |
⊢ ( Lim 𝑥 → ( ω ∈ 𝑥 ∨ ω = 𝑥 ) ) |
13 |
12
|
ord |
⊢ ( Lim 𝑥 → ( ¬ ω ∈ 𝑥 → ω = 𝑥 ) ) |
14 |
|
limeq |
⊢ ( ω = 𝑥 → ( Lim ω ↔ Lim 𝑥 ) ) |
15 |
14
|
biimprcd |
⊢ ( Lim 𝑥 → ( ω = 𝑥 → Lim ω ) ) |
16 |
13 15
|
syld |
⊢ ( Lim 𝑥 → ( ¬ ω ∈ 𝑥 → Lim ω ) ) |
17 |
16
|
con1d |
⊢ ( Lim 𝑥 → ( ¬ Lim ω → ω ∈ 𝑥 ) ) |
18 |
17
|
com12 |
⊢ ( ¬ Lim ω → ( Lim 𝑥 → ω ∈ 𝑥 ) ) |
19 |
18
|
alrimiv |
⊢ ( ¬ Lim ω → ∀ 𝑥 ( Lim 𝑥 → ω ∈ 𝑥 ) ) |
20 |
7 19
|
nsyl2 |
⊢ ( ω ∈ On → Lim ω ) |
21 |
|
limon |
⊢ Lim On |
22 |
|
limeq |
⊢ ( ω = On → ( Lim ω ↔ Lim On ) ) |
23 |
21 22
|
mpbiri |
⊢ ( ω = On → Lim ω ) |
24 |
20 23
|
jaoi |
⊢ ( ( ω ∈ On ∨ ω = On ) → Lim ω ) |
25 |
2 24
|
sylbi |
⊢ ( Ord ω → Lim ω ) |
26 |
1 25
|
ax-mp |
⊢ Lim ω |