Step |
Hyp |
Ref |
Expression |
1 |
|
limord |
⊢ ( Lim 𝐴 → Ord 𝐴 ) |
2 |
|
ordeleqon |
⊢ ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) ) |
3 |
|
elom |
⊢ ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) ) |
4 |
3
|
simprbi |
⊢ ( 𝑥 ∈ ω → ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ) |
5 |
|
limeq |
⊢ ( 𝑦 = 𝐴 → ( Lim 𝑦 ↔ Lim 𝐴 ) ) |
6 |
|
eleq2 |
⊢ ( 𝑦 = 𝐴 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝐴 ) ) |
7 |
5 6
|
imbi12d |
⊢ ( 𝑦 = 𝐴 → ( ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) ↔ ( Lim 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
8 |
7
|
spcgv |
⊢ ( 𝐴 ∈ On → ( ∀ 𝑦 ( Lim 𝑦 → 𝑥 ∈ 𝑦 ) → ( Lim 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
9 |
4 8
|
syl5 |
⊢ ( 𝐴 ∈ On → ( 𝑥 ∈ ω → ( Lim 𝐴 → 𝑥 ∈ 𝐴 ) ) ) |
10 |
9
|
com23 |
⊢ ( 𝐴 ∈ On → ( Lim 𝐴 → ( 𝑥 ∈ ω → 𝑥 ∈ 𝐴 ) ) ) |
11 |
10
|
imp |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑥 ∈ ω → 𝑥 ∈ 𝐴 ) ) |
12 |
11
|
ssrdv |
⊢ ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ω ⊆ 𝐴 ) |
13 |
12
|
ex |
⊢ ( 𝐴 ∈ On → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
14 |
|
omsson |
⊢ ω ⊆ On |
15 |
|
sseq2 |
⊢ ( 𝐴 = On → ( ω ⊆ 𝐴 ↔ ω ⊆ On ) ) |
16 |
14 15
|
mpbiri |
⊢ ( 𝐴 = On → ω ⊆ 𝐴 ) |
17 |
16
|
a1d |
⊢ ( 𝐴 = On → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
18 |
13 17
|
jaoi |
⊢ ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
19 |
2 18
|
sylbi |
⊢ ( Ord 𝐴 → ( Lim 𝐴 → ω ⊆ 𝐴 ) ) |
20 |
1 19
|
mpcom |
⊢ ( Lim 𝐴 → ω ⊆ 𝐴 ) |