Metamath Proof Explorer


Theorem limomss

Description: The class of natural numbers is a subclass of any (infinite) limit ordinal. Exercise 1 of TakeutiZaring p. 44. Remarkably, our proof does not require the Axiom of Infinity. (Contributed by NM, 30-Oct-2003)

Ref Expression
Assertion limomss ( Lim 𝐴 → ω ⊆ 𝐴 )

Proof

Step Hyp Ref Expression
1 limord ( Lim 𝐴 → Ord 𝐴 )
2 ordeleqon ( Ord 𝐴 ↔ ( 𝐴 ∈ On ∨ 𝐴 = On ) )
3 elom ( 𝑥 ∈ ω ↔ ( 𝑥 ∈ On ∧ ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) ) )
4 3 simprbi ( 𝑥 ∈ ω → ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) )
5 limeq ( 𝑦 = 𝐴 → ( Lim 𝑦 ↔ Lim 𝐴 ) )
6 eleq2 ( 𝑦 = 𝐴 → ( 𝑥𝑦𝑥𝐴 ) )
7 5 6 imbi12d ( 𝑦 = 𝐴 → ( ( Lim 𝑦𝑥𝑦 ) ↔ ( Lim 𝐴𝑥𝐴 ) ) )
8 7 spcgv ( 𝐴 ∈ On → ( ∀ 𝑦 ( Lim 𝑦𝑥𝑦 ) → ( Lim 𝐴𝑥𝐴 ) ) )
9 4 8 syl5 ( 𝐴 ∈ On → ( 𝑥 ∈ ω → ( Lim 𝐴𝑥𝐴 ) ) )
10 9 com23 ( 𝐴 ∈ On → ( Lim 𝐴 → ( 𝑥 ∈ ω → 𝑥𝐴 ) ) )
11 10 imp ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ( 𝑥 ∈ ω → 𝑥𝐴 ) )
12 11 ssrdv ( ( 𝐴 ∈ On ∧ Lim 𝐴 ) → ω ⊆ 𝐴 )
13 12 ex ( 𝐴 ∈ On → ( Lim 𝐴 → ω ⊆ 𝐴 ) )
14 omsson ω ⊆ On
15 sseq2 ( 𝐴 = On → ( ω ⊆ 𝐴 ↔ ω ⊆ On ) )
16 14 15 mpbiri ( 𝐴 = On → ω ⊆ 𝐴 )
17 16 a1d ( 𝐴 = On → ( Lim 𝐴 → ω ⊆ 𝐴 ) )
18 13 17 jaoi ( ( 𝐴 ∈ On ∨ 𝐴 = On ) → ( Lim 𝐴 → ω ⊆ 𝐴 ) )
19 2 18 sylbi ( Ord 𝐴 → ( Lim 𝐴 → ω ⊆ 𝐴 ) )
20 1 19 mpcom ( Lim 𝐴 → ω ⊆ 𝐴 )