Metamath Proof Explorer


Theorem limord

Description: A limit ordinal is ordinal. (Contributed by NM, 4-May-1995)

Ref Expression
Assertion limord ( Lim 𝐴 → Ord 𝐴 )

Proof

Step Hyp Ref Expression
1 df-lim ( Lim 𝐴 ↔ ( Ord 𝐴𝐴 ≠ ∅ ∧ 𝐴 = 𝐴 ) )
2 1 simp1bi ( Lim 𝐴 → Ord 𝐴 )