Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Power Sets
Ordinals
limord
Next ⟩
limuni
Metamath Proof Explorer
Ascii
Structured
Theorem
limord
Description:
A limit ordinal is ordinal.
(Contributed by
NM
, 4-May-1995)
Ref
Expression
Assertion
limord
⊢
( Lim
𝐴
→ Ord
𝐴
)
Proof
Step
Hyp
Ref
Expression
1
df-lim
⊢
( Lim
𝐴
↔ ( Ord
𝐴
∧
𝐴
≠ ∅ ∧
𝐴
=
∪
𝐴
) )
2
1
simp1bi
⊢
( Lim
𝐴
→ Ord
𝐴
)