Step |
Hyp |
Ref |
Expression |
1 |
|
limsupbnd.1 |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
2 |
|
limsupbnd.2 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ* ) |
3 |
|
limsupbnd.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
4 |
|
limsupbnd1.4 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝐵 ⊆ ℝ ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝐹 : 𝐵 ⟶ ℝ* ) |
7 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝑘 ∈ ℝ ) |
8 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → 𝐴 ∈ ℝ* ) |
9 |
|
eqid |
⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
10 |
9
|
limsupgle |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
11 |
5 6 7 8 10
|
syl211anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
12 |
|
reex |
⊢ ℝ ∈ V |
13 |
12
|
ssex |
⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
14 |
1 13
|
syl |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
15 |
|
xrex |
⊢ ℝ* ∈ V |
16 |
15
|
a1i |
⊢ ( 𝜑 → ℝ* ∈ V ) |
17 |
|
fex2 |
⊢ ( ( 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V ) |
18 |
2 14 16 17
|
syl3anc |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
19 |
|
limsupcl |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
20 |
18 19
|
syl |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
21 |
20
|
xrleidd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ) |
22 |
9
|
limsuple |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) ) |
23 |
1 2 20 22
|
syl3anc |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) ) |
24 |
21 23
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) |
25 |
24
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) |
26 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
27 |
9
|
limsupgf |
⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* |
28 |
27
|
a1i |
⊢ ( 𝜑 → ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* ) |
29 |
28
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∈ ℝ* ) |
30 |
|
xrletr |
⊢ ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ* ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( ( ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
31 |
26 29 8 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
32 |
25 31
|
mpand |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
33 |
11 32
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
34 |
33
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) ) |
35 |
4 34
|
mpd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) |