Metamath Proof Explorer


Theorem limsupbnd1

Description: If a sequence is eventually at most A , then the limsup is also at most A . (The converse is only true if the less or equal is replaced by strictly less than; consider the sequence 1 / n which is never less or equal to zero even though the limsup is.) (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypotheses limsupbnd.1 ( 𝜑𝐵 ⊆ ℝ )
limsupbnd.2 ( 𝜑𝐹 : 𝐵 ⟶ ℝ* )
limsupbnd.3 ( 𝜑𝐴 ∈ ℝ* )
limsupbnd1.4 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) )
Assertion limsupbnd1 ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 )

Proof

Step Hyp Ref Expression
1 limsupbnd.1 ( 𝜑𝐵 ⊆ ℝ )
2 limsupbnd.2 ( 𝜑𝐹 : 𝐵 ⟶ ℝ* )
3 limsupbnd.3 ( 𝜑𝐴 ∈ ℝ* )
4 limsupbnd1.4 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) )
5 1 adantr ( ( 𝜑𝑘 ∈ ℝ ) → 𝐵 ⊆ ℝ )
6 2 adantr ( ( 𝜑𝑘 ∈ ℝ ) → 𝐹 : 𝐵 ⟶ ℝ* )
7 simpr ( ( 𝜑𝑘 ∈ ℝ ) → 𝑘 ∈ ℝ )
8 3 adantr ( ( 𝜑𝑘 ∈ ℝ ) → 𝐴 ∈ ℝ* )
9 eqid ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
10 9 limsupgle ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝑘 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ↔ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
11 5 6 7 8 10 syl211anc ( ( 𝜑𝑘 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ↔ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) ) )
12 reex ℝ ∈ V
13 12 ssex ( 𝐵 ⊆ ℝ → 𝐵 ∈ V )
14 1 13 syl ( 𝜑𝐵 ∈ V )
15 xrex * ∈ V
16 15 a1i ( 𝜑 → ℝ* ∈ V )
17 fex2 ( ( 𝐹 : 𝐵 ⟶ ℝ*𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V )
18 2 14 16 17 syl3anc ( 𝜑𝐹 ∈ V )
19 limsupcl ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
20 18 19 syl ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
21 20 xrleidd ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) )
22 9 limsuple ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ ( lim sup ‘ 𝐹 ) ∈ ℝ* ) → ( ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) )
23 1 2 20 22 syl3anc ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ) )
24 21 23 mpbid ( 𝜑 → ∀ 𝑘 ∈ ℝ ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) )
25 24 r19.21bi ( ( 𝜑𝑘 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) )
26 20 adantr ( ( 𝜑𝑘 ∈ ℝ ) → ( lim sup ‘ 𝐹 ) ∈ ℝ* )
27 9 limsupgf ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ*
28 27 a1i ( 𝜑 → ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* )
29 28 ffvelrnda ( ( 𝜑𝑘 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∈ ℝ* )
30 xrletr ( ( ( lim sup ‘ 𝐹 ) ∈ ℝ* ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∈ ℝ*𝐴 ∈ ℝ* ) → ( ( ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) )
31 26 29 8 30 syl3anc ( ( 𝜑𝑘 ∈ ℝ ) → ( ( ( lim sup ‘ 𝐹 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) )
32 25 31 mpand ( ( 𝜑𝑘 ∈ ℝ ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑘 ) ≤ 𝐴 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) )
33 11 32 sylbird ( ( 𝜑𝑘 ∈ ℝ ) → ( ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) )
34 33 rexlimdva ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐵 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝐴 ) → ( lim sup ‘ 𝐹 ) ≤ 𝐴 ) )
35 4 34 mpd ( 𝜑 → ( lim sup ‘ 𝐹 ) ≤ 𝐴 )