Step |
Hyp |
Ref |
Expression |
1 |
|
limsupbnd.1 |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
2 |
|
limsupbnd.2 |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ℝ* ) |
3 |
|
limsupbnd.3 |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
4 |
|
limsupbnd2.4 |
⊢ ( 𝜑 → sup ( 𝐵 , ℝ* , < ) = +∞ ) |
5 |
|
limsupbnd2.5 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
6 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
7 |
1 6
|
sstrdi |
⊢ ( 𝜑 → 𝐵 ⊆ ℝ* ) |
8 |
|
supxrunb1 |
⊢ ( 𝐵 ⊆ ℝ* → ( ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ↔ sup ( 𝐵 , ℝ* , < ) = +∞ ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ↔ sup ( 𝐵 , ℝ* , < ) = +∞ ) ) |
10 |
4 9
|
mpbird |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ) |
11 |
|
ifcl |
⊢ ( ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ) |
12 |
|
breq1 |
⊢ ( 𝑛 = if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) → ( 𝑛 ≤ 𝑗 ↔ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) ) |
13 |
12
|
rexbidv |
⊢ ( 𝑛 = if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) → ( ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ↔ ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) ) |
14 |
13
|
rspccva |
⊢ ( ( ∀ 𝑛 ∈ ℝ ∃ 𝑗 ∈ 𝐵 𝑛 ≤ 𝑗 ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ) → ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) |
15 |
10 11 14
|
syl2an |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) |
16 |
|
r19.29 |
⊢ ( ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → ∃ 𝑗 ∈ 𝐵 ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) ) |
17 |
|
simplrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑘 ∈ ℝ ) |
18 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝑚 ∈ ℝ ) |
19 |
18
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑚 ∈ ℝ ) |
20 |
|
max1 |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) |
21 |
17 19 20
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) |
22 |
19 17 11
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝐵 ⊆ ℝ ) |
24 |
23
|
sselda |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ ℝ ) |
25 |
|
letr |
⊢ ( ( 𝑘 ∈ ℝ ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) ) |
26 |
17 22 24 25
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑘 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) ) |
27 |
21 26
|
mpand |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 → 𝑘 ≤ 𝑗 ) ) |
28 |
27
|
imim1d |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → ( if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) ) |
29 |
28
|
impd |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ) |
30 |
|
max2 |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑚 ∈ ℝ ) → 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) |
31 |
17 19 30
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ) |
32 |
|
letr |
⊢ ( ( 𝑚 ∈ ℝ ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( ( 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑚 ≤ 𝑗 ) ) |
33 |
19 22 24 32
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑚 ≤ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑚 ≤ 𝑗 ) ) |
34 |
31 33
|
mpand |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 → 𝑚 ≤ 𝑗 ) ) |
35 |
34
|
adantld |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝑚 ≤ 𝑗 ) ) |
36 |
|
eqid |
⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
37 |
36
|
limsupgf |
⊢ ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* |
38 |
37
|
ffvelrni |
⊢ ( 𝑚 ∈ ℝ → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
40 |
39
|
xrleidd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) |
41 |
40
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) |
42 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → 𝐹 : 𝐵 ⟶ ℝ* ) |
43 |
18 38
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
44 |
36
|
limsupgle |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝑚 ∈ ℝ ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) ) |
45 |
23 42 18 43 44
|
syl211anc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ↔ ∀ 𝑗 ∈ 𝐵 ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) ) |
46 |
41 45
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ∀ 𝑗 ∈ 𝐵 ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
47 |
46
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝑚 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
48 |
35 47
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
49 |
29 48
|
jcad |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → ( 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) ) |
50 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → 𝐴 ∈ ℝ* ) |
51 |
42
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ) |
52 |
43
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) |
53 |
|
xrletr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℝ* ∧ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ∈ ℝ* ) → ( ( 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
54 |
50 51 52 53
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ∧ ( 𝐹 ‘ 𝑗 ) ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
55 |
49 54
|
syld |
⊢ ( ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) ∧ 𝑗 ∈ 𝐵 ) → ( ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
56 |
55
|
rexlimdva |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ∃ 𝑗 ∈ 𝐵 ( ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
57 |
16 56
|
syl5 |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) ∧ ∃ 𝑗 ∈ 𝐵 if ( 𝑘 ≤ 𝑚 , 𝑚 , 𝑘 ) ≤ 𝑗 ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
58 |
15 57
|
mpan2d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ ℝ ∧ 𝑘 ∈ ℝ ) ) → ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
59 |
58
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
60 |
59
|
rexlimdva |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
61 |
60
|
ralrimdva |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐵 ( 𝑘 ≤ 𝑗 → 𝐴 ≤ ( 𝐹 ‘ 𝑗 ) ) → ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
62 |
5 61
|
mpd |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) |
63 |
36
|
limsuple |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
64 |
1 2 3 63
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑚 ∈ ℝ 𝐴 ≤ ( ( 𝑛 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑛 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ‘ 𝑚 ) ) ) |
65 |
62 64
|
mpbird |
⊢ ( 𝜑 → 𝐴 ≤ ( lim sup ‘ 𝐹 ) ) |