Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐹 ∈ 𝑉 → 𝐹 ∈ V ) |
2 |
|
df-limsup |
⊢ lim sup = ( 𝑓 ∈ V ↦ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ) |
3 |
|
eqid |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
4 |
|
inss2 |
⊢ ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
5 |
|
supxrcl |
⊢ ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* → sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
6 |
4 5
|
mp1i |
⊢ ( 𝑘 ∈ ℝ → sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ∈ ℝ* ) |
7 |
3 6
|
fmpti |
⊢ ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* |
8 |
|
frn |
⊢ ( ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) : ℝ ⟶ ℝ* → ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* ) |
9 |
7 8
|
ax-mp |
⊢ ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* |
10 |
|
infxrcl |
⊢ ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) ⊆ ℝ* → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* ) |
11 |
9 10
|
mp1i |
⊢ ( 𝑓 ∈ V → inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝑓 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) , ℝ* , < ) ∈ ℝ* ) |
12 |
2 11
|
fmpti |
⊢ lim sup : V ⟶ ℝ* |
13 |
12
|
ffvelrni |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |
14 |
1 13
|
syl |
⊢ ( 𝐹 ∈ 𝑉 → ( lim sup ‘ 𝐹 ) ∈ ℝ* ) |