Metamath Proof Explorer


Theorem limsupequz

Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupequz.1 𝑘 𝜑
limsupequz.2 𝑘 𝐹
limsupequz.3 𝑘 𝐺
limsupequz.4 ( 𝜑𝑀 ∈ ℤ )
limsupequz.5 ( 𝜑𝐹 Fn ( ℤ𝑀 ) )
limsupequz.6 ( 𝜑𝑁 ∈ ℤ )
limsupequz.7 ( 𝜑𝐺 Fn ( ℤ𝑁 ) )
limsupequz.8 ( 𝜑𝐾 ∈ ℤ )
limsupequz.9 ( ( 𝜑𝑘 ∈ ( ℤ𝐾 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
Assertion limsupequz ( 𝜑 → ( lim sup ‘ 𝐹 ) = ( lim sup ‘ 𝐺 ) )

Proof

Step Hyp Ref Expression
1 limsupequz.1 𝑘 𝜑
2 limsupequz.2 𝑘 𝐹
3 limsupequz.3 𝑘 𝐺
4 limsupequz.4 ( 𝜑𝑀 ∈ ℤ )
5 limsupequz.5 ( 𝜑𝐹 Fn ( ℤ𝑀 ) )
6 limsupequz.6 ( 𝜑𝑁 ∈ ℤ )
7 limsupequz.7 ( 𝜑𝐺 Fn ( ℤ𝑁 ) )
8 limsupequz.8 ( 𝜑𝐾 ∈ ℤ )
9 limsupequz.9 ( ( 𝜑𝑘 ∈ ( ℤ𝐾 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) )
10 nfv 𝑗 𝜑
11 nfv 𝑘 𝑗 ∈ ( ℤ𝐾 )
12 1 11 nfan 𝑘 ( 𝜑𝑗 ∈ ( ℤ𝐾 ) )
13 nfcv 𝑘 𝑗
14 2 13 nffv 𝑘 ( 𝐹𝑗 )
15 3 13 nffv 𝑘 ( 𝐺𝑗 )
16 14 15 nfeq 𝑘 ( 𝐹𝑗 ) = ( 𝐺𝑗 )
17 12 16 nfim 𝑘 ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( 𝐹𝑗 ) = ( 𝐺𝑗 ) )
18 eleq1w ( 𝑘 = 𝑗 → ( 𝑘 ∈ ( ℤ𝐾 ) ↔ 𝑗 ∈ ( ℤ𝐾 ) ) )
19 18 anbi2d ( 𝑘 = 𝑗 → ( ( 𝜑𝑘 ∈ ( ℤ𝐾 ) ) ↔ ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) ) )
20 fveq2 ( 𝑘 = 𝑗 → ( 𝐹𝑘 ) = ( 𝐹𝑗 ) )
21 fveq2 ( 𝑘 = 𝑗 → ( 𝐺𝑘 ) = ( 𝐺𝑗 ) )
22 20 21 eqeq12d ( 𝑘 = 𝑗 → ( ( 𝐹𝑘 ) = ( 𝐺𝑘 ) ↔ ( 𝐹𝑗 ) = ( 𝐺𝑗 ) ) )
23 19 22 imbi12d ( 𝑘 = 𝑗 → ( ( ( 𝜑𝑘 ∈ ( ℤ𝐾 ) ) → ( 𝐹𝑘 ) = ( 𝐺𝑘 ) ) ↔ ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( 𝐹𝑗 ) = ( 𝐺𝑗 ) ) ) )
24 17 23 9 chvarfv ( ( 𝜑𝑗 ∈ ( ℤ𝐾 ) ) → ( 𝐹𝑗 ) = ( 𝐺𝑗 ) )
25 10 4 5 6 7 8 24 limsupequzlem ( 𝜑 → ( lim sup ‘ 𝐹 ) = ( lim sup ‘ 𝐺 ) )