| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							limsupequzmpt2.j | 
							⊢ Ⅎ 𝑗 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							limsupequzmpt2.o | 
							⊢ Ⅎ 𝑗 𝐴  | 
						
						
							| 3 | 
							
								
							 | 
							limsupequzmpt2.p | 
							⊢ Ⅎ 𝑗 𝐵  | 
						
						
							| 4 | 
							
								
							 | 
							limsupequzmpt2.a | 
							⊢ 𝐴  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 5 | 
							
								
							 | 
							limsupequzmpt2.b | 
							⊢ 𝐵  =  ( ℤ≥ ‘ 𝑁 )  | 
						
						
							| 6 | 
							
								
							 | 
							limsupequzmpt2.k | 
							⊢ ( 𝜑  →  𝐾  ∈  𝐴 )  | 
						
						
							| 7 | 
							
								
							 | 
							limsupequzmpt2.e | 
							⊢ ( 𝜑  →  𝐾  ∈  𝐵 )  | 
						
						
							| 8 | 
							
								
							 | 
							limsupequzmpt2.c | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐶  ∈  𝑉 )  | 
						
						
							| 9 | 
							
								4 6
							 | 
							uzssd2 | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝐴 )  | 
						
						
							| 10 | 
							
								9
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝐴 )  | 
						
						
							| 11 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  | 
						
						
							| 12 | 
							
								10 11
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑗  ∈  𝐴 )  | 
						
						
							| 13 | 
							
								8
							 | 
							elexd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝐶  ∈  V )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑗  ∈  𝐴  ∧  𝐶  ∈  V ) )  | 
						
						
							| 15 | 
							
								
							 | 
							rabid | 
							⊢ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↔  ( 𝑗  ∈  𝐴  ∧  𝐶  ∈  V ) )  | 
						
						
							| 16 | 
							
								14 15
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V } )  | 
						
						
							| 17 | 
							
								16
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  →  𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V } ) )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							ralrimi | 
							⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V } )  | 
						
						
							| 19 | 
							
								
							 | 
							nfcv | 
							⊢ Ⅎ 𝑗 ( ℤ≥ ‘ 𝐾 )  | 
						
						
							| 20 | 
							
								
							 | 
							nfrab1 | 
							⊢ Ⅎ 𝑗 { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  | 
						
						
							| 21 | 
							
								19 20
							 | 
							dfss3f | 
							⊢ ( ( ℤ≥ ‘ 𝐾 )  ⊆  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V } )  | 
						
						
							| 22 | 
							
								18 21
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝐾 )  ⊆  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V } )  | 
						
						
							| 23 | 
							
								20 19
							 | 
							resmptf | 
							⊢ ( ( ℤ≥ ‘ 𝐾 )  ⊆  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  →  ( ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) )  | 
						
						
							| 24 | 
							
								22 23
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 )  =  ( ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) )  =  ( lim sup ‘ ( ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) ) ) )  | 
						
						
							| 27 | 
							
								4 6
							 | 
							eluzelz2d | 
							⊢ ( 𝜑  →  𝐾  ∈  ℤ )  | 
						
						
							| 28 | 
							
								
							 | 
							eqid | 
							⊢ ( ℤ≥ ‘ 𝐾 )  =  ( ℤ≥ ‘ 𝐾 )  | 
						
						
							| 29 | 
							
								4
							 | 
							fvexi | 
							⊢ 𝐴  ∈  V  | 
						
						
							| 30 | 
							
								2 29
							 | 
							rabexf | 
							⊢ { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ∈  V  | 
						
						
							| 31 | 
							
								20 30
							 | 
							mptexf | 
							⊢ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ∈  V  | 
						
						
							| 32 | 
							
								31
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ∈  V )  | 
						
						
							| 33 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  =  ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  | 
						
						
							| 34 | 
							
								20 33
							 | 
							dmmptssf | 
							⊢ dom  ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ⊆  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  | 
						
						
							| 35 | 
							
								2
							 | 
							ssrab2f | 
							⊢ { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ⊆  𝐴  | 
						
						
							| 36 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ  | 
						
						
							| 37 | 
							
								4 36
							 | 
							eqsstri | 
							⊢ 𝐴  ⊆  ℤ  | 
						
						
							| 38 | 
							
								35 37
							 | 
							sstri | 
							⊢ { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ⊆  ℤ  | 
						
						
							| 39 | 
							
								34 38
							 | 
							sstri | 
							⊢ dom  ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ⊆  ℤ  | 
						
						
							| 40 | 
							
								39
							 | 
							a1i | 
							⊢ ( 𝜑  →  dom  ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ⊆  ℤ )  | 
						
						
							| 41 | 
							
								27 28 32 40
							 | 
							limsupresuz2 | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 ) ) )  | 
						
						
							| 42 | 
							
								26 41
							 | 
							eqtr2d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) ) )  | 
						
						
							| 43 | 
							
								5 7
							 | 
							uzssd2 | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝐵 )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( ℤ≥ ‘ 𝐾 )  ⊆  𝐵 )  | 
						
						
							| 45 | 
							
								44 11
							 | 
							sseldd | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑗  ∈  𝐵 )  | 
						
						
							| 46 | 
							
								45 13
							 | 
							jca | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  ( 𝑗  ∈  𝐵  ∧  𝐶  ∈  V ) )  | 
						
						
							| 47 | 
							
								
							 | 
							rabid | 
							⊢ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↔  ( 𝑗  ∈  𝐵  ∧  𝐶  ∈  V ) )  | 
						
						
							| 48 | 
							
								46 47
							 | 
							sylibr | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) )  →  𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V } )  | 
						
						
							| 49 | 
							
								48
							 | 
							ex | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  →  𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V } ) )  | 
						
						
							| 50 | 
							
								1 49
							 | 
							ralrimi | 
							⊢ ( 𝜑  →  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V } )  | 
						
						
							| 51 | 
							
								
							 | 
							nfrab1 | 
							⊢ Ⅎ 𝑗 { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  | 
						
						
							| 52 | 
							
								19 51
							 | 
							dfss3f | 
							⊢ ( ( ℤ≥ ‘ 𝐾 )  ⊆  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↔  ∀ 𝑗  ∈  ( ℤ≥ ‘ 𝐾 ) 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V } )  | 
						
						
							| 53 | 
							
								50 52
							 | 
							sylibr | 
							⊢ ( 𝜑  →  ( ℤ≥ ‘ 𝐾 )  ⊆  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V } )  | 
						
						
							| 54 | 
							
								51 19
							 | 
							resmptf | 
							⊢ ( ( ℤ≥ ‘ 𝐾 )  ⊆  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  →  ( ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							⊢ ( 𝜑  →  ( ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 )  =  ( ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) ) )  | 
						
						
							| 57 | 
							
								56
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) )  =  ( lim sup ‘ ( ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) ) ) )  | 
						
						
							| 58 | 
							
								5
							 | 
							fvexi | 
							⊢ 𝐵  ∈  V  | 
						
						
							| 59 | 
							
								3 58
							 | 
							rabexf | 
							⊢ { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ∈  V  | 
						
						
							| 60 | 
							
								51 59
							 | 
							mptexf | 
							⊢ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ∈  V  | 
						
						
							| 61 | 
							
								60
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ∈  V )  | 
						
						
							| 62 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  =  ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  | 
						
						
							| 63 | 
							
								51 62
							 | 
							dmmptssf | 
							⊢ dom  ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ⊆  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  | 
						
						
							| 64 | 
							
								3
							 | 
							ssrab2f | 
							⊢ { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ⊆  𝐵  | 
						
						
							| 65 | 
							
								
							 | 
							uzssz | 
							⊢ ( ℤ≥ ‘ 𝑁 )  ⊆  ℤ  | 
						
						
							| 66 | 
							
								5 65
							 | 
							eqsstri | 
							⊢ 𝐵  ⊆  ℤ  | 
						
						
							| 67 | 
							
								64 66
							 | 
							sstri | 
							⊢ { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ⊆  ℤ  | 
						
						
							| 68 | 
							
								63 67
							 | 
							sstri | 
							⊢ dom  ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ⊆  ℤ  | 
						
						
							| 69 | 
							
								68
							 | 
							a1i | 
							⊢ ( 𝜑  →  dom  ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ⊆  ℤ )  | 
						
						
							| 70 | 
							
								27 28 61 69
							 | 
							limsupresuz2 | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  ↾  ( ℤ≥ ‘ 𝐾 ) ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 ) ) )  | 
						
						
							| 71 | 
							
								57 70
							 | 
							eqtr2d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  ( ℤ≥ ‘ 𝐾 )  ↦  𝐶 ) ) )  | 
						
						
							| 72 | 
							
								42 71
							 | 
							eqtr4d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  =  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  | 
						
						
							| 74 | 
							
								2 73
							 | 
							mptssid | 
							⊢ ( 𝑗  ∈  𝐴  ↦  𝐶 )  =  ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 )  | 
						
						
							| 75 | 
							
								74
							 | 
							fveq2i | 
							⊢ ( lim sup ‘ ( 𝑗  ∈  𝐴  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 ) )  | 
						
						
							| 76 | 
							
								75
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝐴  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐴  ∣  𝐶  ∈  V }  ↦  𝐶 ) ) )  | 
						
						
							| 77 | 
							
								
							 | 
							eqid | 
							⊢ { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  =  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  | 
						
						
							| 78 | 
							
								3 77
							 | 
							mptssid | 
							⊢ ( 𝑗  ∈  𝐵  ↦  𝐶 )  =  ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 )  | 
						
						
							| 79 | 
							
								78
							 | 
							fveq2i | 
							⊢ ( lim sup ‘ ( 𝑗  ∈  𝐵  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 ) )  | 
						
						
							| 80 | 
							
								79
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝐵  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  { 𝑗  ∈  𝐵  ∣  𝐶  ∈  V }  ↦  𝐶 ) ) )  | 
						
						
							| 81 | 
							
								72 76 80
							 | 
							3eqtr4d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝐴  ↦  𝐶 ) )  =  ( lim sup ‘ ( 𝑗  ∈  𝐵  ↦  𝐶 ) ) )  |