Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
2 |
1
|
limsupgval |
⊢ ( 𝐶 ∈ ℝ → ( 𝐺 ‘ 𝐶 ) = sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
3 |
2
|
3ad2ant2 |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝐺 ‘ 𝐶 ) = sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
4 |
3
|
breq1d |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝐶 ) ≤ 𝐴 ↔ sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ) ) |
5 |
|
inss2 |
⊢ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* |
6 |
|
simp3 |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
7 |
|
supxrleub |
⊢ ( ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ) ) |
8 |
5 6 7
|
sylancr |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( sup ( ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ) ) |
9 |
|
imassrn |
⊢ ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ran 𝐹 |
10 |
|
simp1r |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* ) |
11 |
10
|
frnd |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ran 𝐹 ⊆ ℝ* ) |
12 |
9 11
|
sstrid |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ℝ* ) |
13 |
|
df-ss |
⊢ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ⊆ ℝ* ↔ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ) |
14 |
12 13
|
sylib |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ) |
15 |
|
imadmres |
⊢ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) = ( 𝐹 “ ( 𝐶 [,) +∞ ) ) |
16 |
14 15
|
eqtr4di |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) = ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) ) |
17 |
16
|
raleqdv |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥 ≤ 𝐴 ) ) |
18 |
10
|
ffnd |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐹 Fn 𝐵 ) |
19 |
10
|
fdmd |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom 𝐹 = 𝐵 ) |
20 |
19
|
ineq2d |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐶 [,) +∞ ) ∩ dom 𝐹 ) = ( ( 𝐶 [,) +∞ ) ∩ 𝐵 ) ) |
21 |
|
dmres |
⊢ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) = ( ( 𝐶 [,) +∞ ) ∩ dom 𝐹 ) |
22 |
|
incom |
⊢ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) = ( ( 𝐶 [,) +∞ ) ∩ 𝐵 ) |
23 |
20 21 22
|
3eqtr4g |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) = ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ) |
24 |
|
inss1 |
⊢ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 |
25 |
23 24
|
eqsstrdi |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 ) |
26 |
|
breq1 |
⊢ ( 𝑥 = ( 𝐹 ‘ 𝑗 ) → ( 𝑥 ≤ 𝐴 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) |
27 |
26
|
ralima |
⊢ ( ( 𝐹 Fn 𝐵 ∧ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ⊆ 𝐵 ) → ( ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) |
28 |
18 25 27
|
syl2anc |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( 𝐹 “ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) |
29 |
23
|
eleq2d |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ 𝑗 ∈ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ) ) |
30 |
|
elin |
⊢ ( 𝑗 ∈ ( 𝐵 ∩ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ( 𝐶 [,) +∞ ) ) ) |
31 |
29 30
|
bitrdi |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ( 𝐶 [,) +∞ ) ) ) ) |
32 |
|
simpl2 |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ 𝐵 ) → 𝐶 ∈ ℝ ) |
33 |
|
simp1l |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → 𝐵 ⊆ ℝ ) |
34 |
33
|
sselda |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ 𝐵 ) → 𝑗 ∈ ℝ ) |
35 |
|
elicopnf |
⊢ ( 𝐶 ∈ ℝ → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ ( 𝑗 ∈ ℝ ∧ 𝐶 ≤ 𝑗 ) ) ) |
36 |
35
|
baibd |
⊢ ( ( 𝐶 ∈ ℝ ∧ 𝑗 ∈ ℝ ) → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ 𝐶 ≤ 𝑗 ) ) |
37 |
32 34 36
|
syl2anc |
⊢ ( ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) ∧ 𝑗 ∈ 𝐵 ) → ( 𝑗 ∈ ( 𝐶 [,) +∞ ) ↔ 𝐶 ≤ 𝑗 ) ) |
38 |
37
|
pm5.32da |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ 𝐵 ∧ 𝑗 ∈ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) ) ) |
39 |
31 38
|
bitrd |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ↔ ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) ) ) |
40 |
39
|
imbi1d |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ↔ ( ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
41 |
|
impexp |
⊢ ( ( ( 𝑗 ∈ 𝐵 ∧ 𝐶 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ↔ ( 𝑗 ∈ 𝐵 → ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
42 |
40 41
|
bitrdi |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ↔ ( 𝑗 ∈ 𝐵 → ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) ) |
43 |
42
|
ralbidv2 |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑗 ∈ dom ( 𝐹 ↾ ( 𝐶 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
44 |
17 28 43
|
3bitrd |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ∀ 𝑥 ∈ ( ( 𝐹 “ ( 𝐶 [,) +∞ ) ) ∩ ℝ* ) 𝑥 ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |
45 |
4 8 44
|
3bitrd |
⊢ ( ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ) ∧ 𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ* ) → ( ( 𝐺 ‘ 𝐶 ) ≤ 𝐴 ↔ ∀ 𝑗 ∈ 𝐵 ( 𝐶 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝐴 ) ) ) |