| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupval.1 | ⊢ 𝐺  =  ( 𝑘  ∈  ℝ  ↦  sup ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) | 
						
							| 2 |  | limsupgre.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 3 |  | xrltso | ⊢  <   Or  ℝ* | 
						
							| 4 | 3 | supex | ⊢ sup ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  ∈  V | 
						
							| 5 | 4 | a1i | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑘  ∈  ℝ )  →  sup ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  ∈  V ) | 
						
							| 6 | 1 | a1i | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  →  𝐺  =  ( 𝑘  ∈  ℝ  ↦  sup ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) ) | 
						
							| 7 | 1 | limsupgval | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝐺 ‘ 𝑎 )  =  sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( 𝐺 ‘ 𝑎 )  =  sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) | 
						
							| 9 |  | simpl3 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( lim sup ‘ 𝐹 )  <  +∞ ) | 
						
							| 10 |  | uzssz | ⊢ ( ℤ≥ ‘ 𝑀 )  ⊆  ℤ | 
						
							| 11 | 2 10 | eqsstri | ⊢ 𝑍  ⊆  ℤ | 
						
							| 12 |  | zssre | ⊢ ℤ  ⊆  ℝ | 
						
							| 13 | 11 12 | sstri | ⊢ 𝑍  ⊆  ℝ | 
						
							| 14 | 13 | a1i | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑍  ⊆  ℝ ) | 
						
							| 15 |  | simpl2 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 16 |  | ressxr | ⊢ ℝ  ⊆  ℝ* | 
						
							| 17 |  | fss | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ  ∧  ℝ  ⊆  ℝ* )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 18 | 15 16 17 | sylancl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 19 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 20 | 19 | a1i | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  +∞  ∈  ℝ* ) | 
						
							| 21 | 1 | limsuplt | ⊢ ( ( 𝑍  ⊆  ℝ  ∧  𝐹 : 𝑍 ⟶ ℝ*  ∧  +∞  ∈  ℝ* )  →  ( ( lim sup ‘ 𝐹 )  <  +∞  ↔  ∃ 𝑛  ∈  ℝ ( 𝐺 ‘ 𝑛 )  <  +∞ ) ) | 
						
							| 22 | 14 18 20 21 | syl3anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( lim sup ‘ 𝐹 )  <  +∞  ↔  ∃ 𝑛  ∈  ℝ ( 𝐺 ‘ 𝑛 )  <  +∞ ) ) | 
						
							| 23 | 9 22 | mpbid | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ∃ 𝑛  ∈  ℝ ( 𝐺 ‘ 𝑛 )  <  +∞ ) | 
						
							| 24 |  | fzfi | ⊢ ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  ∈  Fin | 
						
							| 25 | 15 | adantr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  →  𝐹 : 𝑍 ⟶ ℝ ) | 
						
							| 26 |  | elfzuz | ⊢ ( 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  →  𝑚  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 27 | 26 2 | eleqtrrdi | ⊢ ( 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  →  𝑚  ∈  𝑍 ) | 
						
							| 28 |  | ffvelcdm | ⊢ ( ( 𝐹 : 𝑍 ⟶ ℝ  ∧  𝑚  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 29 | 25 27 28 | syl2an | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 30 | 29 | ralrimiva | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  →  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ∈  ℝ ) | 
						
							| 31 |  | fimaxre3 | ⊢ ( ( ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  ∈  Fin  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ∈  ℝ )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) | 
						
							| 32 | 24 30 31 | sylancr | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  →  ∃ 𝑟  ∈  ℝ ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) | 
						
							| 33 |  | simpr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑎  ∈  ℝ ) | 
						
							| 34 | 33 | ad2antrr | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑎  ∈  ℝ ) | 
						
							| 35 | 1 | limsupgf | ⊢ 𝐺 : ℝ ⟶ ℝ* | 
						
							| 36 | 35 | ffvelcdmi | ⊢ ( 𝑎  ∈  ℝ  →  ( 𝐺 ‘ 𝑎 )  ∈  ℝ* ) | 
						
							| 37 | 34 36 | syl | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( 𝐺 ‘ 𝑎 )  ∈  ℝ* ) | 
						
							| 38 |  | simprl | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑟  ∈  ℝ ) | 
						
							| 39 | 16 38 | sselid | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑟  ∈  ℝ* ) | 
						
							| 40 |  | simprl | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  →  𝑛  ∈  ℝ ) | 
						
							| 41 | 40 | adantr | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑛  ∈  ℝ ) | 
						
							| 42 | 35 | ffvelcdmi | ⊢ ( 𝑛  ∈  ℝ  →  ( 𝐺 ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 43 | 41 42 | syl | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 44 | 39 43 | ifcld | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 45 | 19 | a1i | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  +∞  ∈  ℝ* ) | 
						
							| 46 | 40 | ad2antrr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑛  ∈  ℝ ) | 
						
							| 47 | 13 | a1i | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑍  ⊆  ℝ ) | 
						
							| 48 | 47 | sselda | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑖  ∈  ℝ ) | 
						
							| 49 | 43 | xrleidd | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( 𝐺 ‘ 𝑛 )  ≤  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 50 | 18 | ad2antrr | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝐹 : 𝑍 ⟶ ℝ* ) | 
						
							| 51 | 1 | limsupgle | ⊢ ( ( ( 𝑍  ⊆  ℝ  ∧  𝐹 : 𝑍 ⟶ ℝ* )  ∧  𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  ∈  ℝ* )  →  ( ( 𝐺 ‘ 𝑛 )  ≤  ( 𝐺 ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  𝑍 ( 𝑛  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 52 | 47 50 41 43 51 | syl211anc | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( ( 𝐺 ‘ 𝑛 )  ≤  ( 𝐺 ‘ 𝑛 )  ↔  ∀ 𝑖  ∈  𝑍 ( 𝑛  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 53 | 49 52 | mpbid | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ∀ 𝑖  ∈  𝑍 ( 𝑛  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 54 | 53 | r19.21bi | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝑛  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 55 | 54 | imp | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑛  ≤  𝑖 )  →  ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 ) ) | 
						
							| 56 | 46 42 | syl | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ∈  ℝ* ) | 
						
							| 57 | 39 | adantr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑟  ∈  ℝ* ) | 
						
							| 58 |  | xrmax1 | ⊢ ( ( ( 𝐺 ‘ 𝑛 )  ∈  ℝ*  ∧  𝑟  ∈  ℝ* )  →  ( 𝐺 ‘ 𝑛 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 59 | 56 57 58 | syl2anc | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑛 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 60 | 50 | ffvelcdmda | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑖 )  ∈  ℝ* ) | 
						
							| 61 | 44 | adantr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ∈  ℝ* ) | 
						
							| 62 |  | xrletr | ⊢ ( ( ( 𝐹 ‘ 𝑖 )  ∈  ℝ*  ∧  ( 𝐺 ‘ 𝑛 )  ∈  ℝ*  ∧  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ∈  ℝ* )  →  ( ( ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 63 | 60 56 61 62 | syl3anc | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 )  ∧  ( 𝐺 ‘ 𝑛 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 64 | 59 63 | mpan2d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑛  ≤  𝑖 )  →  ( ( 𝐹 ‘ 𝑖 )  ≤  ( 𝐺 ‘ 𝑛 )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 66 | 55 65 | mpd | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑛  ≤  𝑖 )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 67 |  | fveq2 | ⊢ ( 𝑚  =  𝑖  →  ( 𝐹 ‘ 𝑚 )  =  ( 𝐹 ‘ 𝑖 ) ) | 
						
							| 68 | 67 | breq1d | ⊢ ( 𝑚  =  𝑖  →  ( ( 𝐹 ‘ 𝑚 )  ≤  𝑟  ↔  ( 𝐹 ‘ 𝑖 )  ≤  𝑟 ) ) | 
						
							| 69 |  | simprr | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) | 
						
							| 70 | 69 | ad2antrr | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑖  ≤  𝑛 )  →  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) | 
						
							| 71 |  | simpr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑖  ∈  𝑍 ) | 
						
							| 72 | 71 2 | eleqtrdi | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 73 | 41 | flcld | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( ⌊ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 74 | 73 | adantr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( ⌊ ‘ 𝑛 )  ∈  ℤ ) | 
						
							| 75 |  | elfz5 | ⊢ ( ( 𝑖  ∈  ( ℤ≥ ‘ 𝑀 )  ∧  ( ⌊ ‘ 𝑛 )  ∈  ℤ )  →  ( 𝑖  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  ↔  𝑖  ≤  ( ⌊ ‘ 𝑛 ) ) ) | 
						
							| 76 | 72 74 75 | syl2anc | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝑖  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  ↔  𝑖  ≤  ( ⌊ ‘ 𝑛 ) ) ) | 
						
							| 77 | 11 71 | sselid | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑖  ∈  ℤ ) | 
						
							| 78 |  | flge | ⊢ ( ( 𝑛  ∈  ℝ  ∧  𝑖  ∈  ℤ )  →  ( 𝑖  ≤  𝑛  ↔  𝑖  ≤  ( ⌊ ‘ 𝑛 ) ) ) | 
						
							| 79 | 46 77 78 | syl2anc | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝑖  ≤  𝑛  ↔  𝑖  ≤  ( ⌊ ‘ 𝑛 ) ) ) | 
						
							| 80 | 76 79 | bitr4d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝑖  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) )  ↔  𝑖  ≤  𝑛 ) ) | 
						
							| 81 | 80 | biimpar | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑖  ≤  𝑛 )  →  𝑖  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ) | 
						
							| 82 | 68 70 81 | rspcdva | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑖  ≤  𝑛 )  →  ( 𝐹 ‘ 𝑖 )  ≤  𝑟 ) | 
						
							| 83 |  | xrmax2 | ⊢ ( ( ( 𝐺 ‘ 𝑛 )  ∈  ℝ*  ∧  𝑟  ∈  ℝ* )  →  𝑟  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 84 | 43 39 83 | syl2anc | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑟  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 85 | 84 | adantr | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  𝑟  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 86 |  | xrletr | ⊢ ( ( ( 𝐹 ‘ 𝑖 )  ∈  ℝ*  ∧  𝑟  ∈  ℝ*  ∧  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ∈  ℝ* )  →  ( ( ( 𝐹 ‘ 𝑖 )  ≤  𝑟  ∧  𝑟  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 87 | 60 57 61 86 | syl3anc | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( ( ( 𝐹 ‘ 𝑖 )  ≤  𝑟  ∧  𝑟  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 88 | 85 87 | mpan2d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( ( 𝐹 ‘ 𝑖 )  ≤  𝑟  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 89 | 88 | adantr | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑖  ≤  𝑛 )  →  ( ( 𝐹 ‘ 𝑖 )  ≤  𝑟  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 90 | 82 89 | mpd | ⊢ ( ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  ∧  𝑖  ≤  𝑛 )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 91 | 46 48 66 90 | lecasei | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 92 | 91 | a1d | ⊢ ( ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  ∧  𝑖  ∈  𝑍 )  →  ( 𝑎  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 93 | 92 | ralrimiva | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ∀ 𝑖  ∈  𝑍 ( 𝑎  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) | 
						
							| 94 | 1 | limsupgle | ⊢ ( ( ( 𝑍  ⊆  ℝ  ∧  𝐹 : 𝑍 ⟶ ℝ* )  ∧  𝑎  ∈  ℝ  ∧  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ∈  ℝ* )  →  ( ( 𝐺 ‘ 𝑎 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ↔  ∀ 𝑖  ∈  𝑍 ( 𝑎  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 95 | 47 50 34 44 94 | syl211anc | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( ( 𝐺 ‘ 𝑎 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  ↔  ∀ 𝑖  ∈  𝑍 ( 𝑎  ≤  𝑖  →  ( 𝐹 ‘ 𝑖 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) ) ) | 
						
							| 96 | 93 95 | mpbird | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( 𝐺 ‘ 𝑎 )  ≤  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) ) ) | 
						
							| 97 | 38 | ltpnfd | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  𝑟  <  +∞ ) | 
						
							| 98 |  | simplrr | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( 𝐺 ‘ 𝑛 )  <  +∞ ) | 
						
							| 99 |  | breq1 | ⊢ ( 𝑟  =  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  →  ( 𝑟  <  +∞  ↔  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  <  +∞ ) ) | 
						
							| 100 |  | breq1 | ⊢ ( ( 𝐺 ‘ 𝑛 )  =  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  →  ( ( 𝐺 ‘ 𝑛 )  <  +∞  ↔  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  <  +∞ ) ) | 
						
							| 101 | 99 100 | ifboth | ⊢ ( ( 𝑟  <  +∞  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ )  →  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 102 | 97 98 101 | syl2anc | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  if ( ( 𝐺 ‘ 𝑛 )  ≤  𝑟 ,  𝑟 ,  ( 𝐺 ‘ 𝑛 ) )  <  +∞ ) | 
						
							| 103 | 37 44 45 96 102 | xrlelttrd | ⊢ ( ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  ∧  ( 𝑟  ∈  ℝ  ∧  ∀ 𝑚  ∈  ( 𝑀 ... ( ⌊ ‘ 𝑛 ) ) ( 𝐹 ‘ 𝑚 )  ≤  𝑟 ) )  →  ( 𝐺 ‘ 𝑎 )  <  +∞ ) | 
						
							| 104 | 32 103 | rexlimddv | ⊢ ( ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  ∧  ( 𝑛  ∈  ℝ  ∧  ( 𝐺 ‘ 𝑛 )  <  +∞ ) )  →  ( 𝐺 ‘ 𝑎 )  <  +∞ ) | 
						
							| 105 | 23 104 | rexlimddv | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( 𝐺 ‘ 𝑎 )  <  +∞ ) | 
						
							| 106 | 8 105 | eqbrtrrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  <  +∞ ) | 
						
							| 107 |  | imassrn | ⊢ ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ⊆  ran  𝐹 | 
						
							| 108 | 15 | frnd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ran  𝐹  ⊆  ℝ ) | 
						
							| 109 | 107 108 | sstrid | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ⊆  ℝ ) | 
						
							| 110 | 109 16 | sstrdi | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ⊆  ℝ* ) | 
						
							| 111 |  | dfss2 | ⊢ ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ⊆  ℝ*  ↔  ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* )  =  ( 𝐹  “  ( 𝑎 [,) +∞ ) ) ) | 
						
							| 112 | 110 111 | sylib | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* )  =  ( 𝐹  “  ( 𝑎 [,) +∞ ) ) ) | 
						
							| 113 | 112 109 | eqsstrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* )  ⊆  ℝ ) | 
						
							| 114 |  | simpl1 | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑀  ∈  ℤ ) | 
						
							| 115 |  | flcl | ⊢ ( 𝑎  ∈  ℝ  →  ( ⌊ ‘ 𝑎 )  ∈  ℤ ) | 
						
							| 116 | 115 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ⌊ ‘ 𝑎 )  ∈  ℤ ) | 
						
							| 117 | 116 | peano2zd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑎 )  +  1 )  ∈  ℤ ) | 
						
							| 118 | 117 114 | ifcld | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ℤ ) | 
						
							| 119 | 114 | zred | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑀  ∈  ℝ ) | 
						
							| 120 | 117 | zred | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑎 )  +  1 )  ∈  ℝ ) | 
						
							| 121 |  | max1 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝑎 )  +  1 )  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) | 
						
							| 122 | 119 120 121 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) | 
						
							| 123 |  | eluz2 | ⊢ ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ℤ  ∧  𝑀  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) ) | 
						
							| 124 | 114 118 122 123 | syl3anbrc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 125 | 124 2 | eleqtrrdi | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  𝑍 ) | 
						
							| 126 | 15 | fdmd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  dom  𝐹  =  𝑍 ) | 
						
							| 127 | 125 126 | eleqtrrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  dom  𝐹 ) | 
						
							| 128 | 118 | zred | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ℝ ) | 
						
							| 129 |  | fllep1 | ⊢ ( 𝑎  ∈  ℝ  →  𝑎  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ) | 
						
							| 130 | 129 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑎  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ) | 
						
							| 131 |  | max2 | ⊢ ( ( 𝑀  ∈  ℝ  ∧  ( ( ⌊ ‘ 𝑎 )  +  1 )  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑎 )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) | 
						
							| 132 | 119 120 131 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( ⌊ ‘ 𝑎 )  +  1 )  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) | 
						
							| 133 | 33 120 128 130 132 | letrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  𝑎  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) | 
						
							| 134 |  | elicopnf | ⊢ ( 𝑎  ∈  ℝ  →  ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ( 𝑎 [,) +∞ )  ↔  ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ℝ  ∧  𝑎  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) ) ) | 
						
							| 135 | 134 | adantl | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ( 𝑎 [,) +∞ )  ↔  ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ℝ  ∧  𝑎  ≤  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 ) ) ) ) | 
						
							| 136 | 128 133 135 | mpbir2and | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ( 𝑎 [,) +∞ ) ) | 
						
							| 137 |  | inelcm | ⊢ ( ( if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  dom  𝐹  ∧  if ( 𝑀  ≤  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  ( ( ⌊ ‘ 𝑎 )  +  1 ) ,  𝑀 )  ∈  ( 𝑎 [,) +∞ ) )  →  ( dom  𝐹  ∩  ( 𝑎 [,) +∞ ) )  ≠  ∅ ) | 
						
							| 138 | 127 136 137 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( dom  𝐹  ∩  ( 𝑎 [,) +∞ ) )  ≠  ∅ ) | 
						
							| 139 |  | imadisj | ⊢ ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  =  ∅  ↔  ( dom  𝐹  ∩  ( 𝑎 [,) +∞ ) )  =  ∅ ) | 
						
							| 140 | 139 | necon3bii | ⊢ ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ≠  ∅  ↔  ( dom  𝐹  ∩  ( 𝑎 [,) +∞ ) )  ≠  ∅ ) | 
						
							| 141 | 138 140 | sylibr | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ≠  ∅ ) | 
						
							| 142 | 112 141 | eqnetrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ ) | 
						
							| 143 |  | supxrre1 | ⊢ ( ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* )  ⊆  ℝ  ∧  ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* )  ≠  ∅ )  →  ( sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  <  +∞ ) ) | 
						
							| 144 | 113 142 143 | syl2anc | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  ∈  ℝ  ↔  sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  <  +∞ ) ) | 
						
							| 145 | 106 144 | mpbird | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  sup ( ( ( 𝐹  “  ( 𝑎 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  )  ∈  ℝ ) | 
						
							| 146 | 8 145 | eqeltrd | ⊢ ( ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  ∧  𝑎  ∈  ℝ )  →  ( 𝐺 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 147 | 5 6 146 | fmpt2d | ⊢ ( ( 𝑀  ∈  ℤ  ∧  𝐹 : 𝑍 ⟶ ℝ  ∧  ( lim sup ‘ 𝐹 )  <  +∞ )  →  𝐺 : ℝ ⟶ ℝ ) |