Metamath Proof Explorer


Theorem limsuple

Description: The defining property of the superior limit. (Contributed by Mario Carneiro, 7-Sep-2014) (Revised by AV, 12-Sep-2020)

Ref Expression
Hypothesis limsupval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
Assertion limsuple ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺𝑗 ) ) )

Proof

Step Hyp Ref Expression
1 limsupval.1 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) )
2 simp2 ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* )
3 reex ℝ ∈ V
4 3 ssex ( 𝐵 ⊆ ℝ → 𝐵 ∈ V )
5 4 3ad2ant1 ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → 𝐵 ∈ V )
6 xrex * ∈ V
7 6 a1i ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ℝ* ∈ V )
8 fex2 ( ( 𝐹 : 𝐵 ⟶ ℝ*𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V )
9 2 5 7 8 syl3anc ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → 𝐹 ∈ V )
10 1 limsupval ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )
11 9 10 syl ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )
12 11 breq2d ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ) )
13 1 limsupgf 𝐺 : ℝ ⟶ ℝ*
14 frn ( 𝐺 : ℝ ⟶ ℝ* → ran 𝐺 ⊆ ℝ* )
15 13 14 ax-mp ran 𝐺 ⊆ ℝ*
16 simp3 ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* )
17 infxrgelb ( ( ran 𝐺 ⊆ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝐴𝑥 ) )
18 15 16 17 sylancr ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝐴𝑥 ) )
19 ffn ( 𝐺 : ℝ ⟶ ℝ*𝐺 Fn ℝ )
20 13 19 ax-mp 𝐺 Fn ℝ
21 breq2 ( 𝑥 = ( 𝐺𝑗 ) → ( 𝐴𝑥𝐴 ≤ ( 𝐺𝑗 ) ) )
22 21 ralrn ( 𝐺 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐺 𝐴𝑥 ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺𝑗 ) ) )
23 20 22 ax-mp ( ∀ 𝑥 ∈ ran 𝐺 𝐴𝑥 ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺𝑗 ) )
24 18 23 bitrdi ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺𝑗 ) ) )
25 12 24 bitrd ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ*𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺𝑗 ) ) )