Step |
Hyp |
Ref |
Expression |
1 |
|
limsupval.1 |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∩ ℝ* ) , ℝ* , < ) ) |
2 |
|
simp2 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐹 : 𝐵 ⟶ ℝ* ) |
3 |
|
reex |
⊢ ℝ ∈ V |
4 |
3
|
ssex |
⊢ ( 𝐵 ⊆ ℝ → 𝐵 ∈ V ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐵 ∈ V ) |
6 |
|
xrex |
⊢ ℝ* ∈ V |
7 |
6
|
a1i |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ℝ* ∈ V ) |
8 |
|
fex2 |
⊢ ( ( 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐵 ∈ V ∧ ℝ* ∈ V ) → 𝐹 ∈ V ) |
9 |
2 5 7 8
|
syl3anc |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐹 ∈ V ) |
10 |
1
|
limsupval |
⊢ ( 𝐹 ∈ V → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
11 |
9 10
|
syl |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
12 |
11
|
breq2d |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ) ) |
13 |
1
|
limsupgf |
⊢ 𝐺 : ℝ ⟶ ℝ* |
14 |
|
frn |
⊢ ( 𝐺 : ℝ ⟶ ℝ* → ran 𝐺 ⊆ ℝ* ) |
15 |
13 14
|
ax-mp |
⊢ ran 𝐺 ⊆ ℝ* |
16 |
|
simp3 |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → 𝐴 ∈ ℝ* ) |
17 |
|
infxrgelb |
⊢ ( ( ran 𝐺 ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ) ) |
18 |
15 16 17
|
sylancr |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ) ) |
19 |
|
ffn |
⊢ ( 𝐺 : ℝ ⟶ ℝ* → 𝐺 Fn ℝ ) |
20 |
13 19
|
ax-mp |
⊢ 𝐺 Fn ℝ |
21 |
|
breq2 |
⊢ ( 𝑥 = ( 𝐺 ‘ 𝑗 ) → ( 𝐴 ≤ 𝑥 ↔ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
22 |
21
|
ralrn |
⊢ ( 𝐺 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
23 |
20 22
|
ax-mp |
⊢ ( ∀ 𝑥 ∈ ran 𝐺 𝐴 ≤ 𝑥 ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) |
24 |
18 23
|
bitrdi |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( ran 𝐺 , ℝ* , < ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |
25 |
12 24
|
bitrd |
⊢ ( ( 𝐵 ⊆ ℝ ∧ 𝐹 : 𝐵 ⟶ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( lim sup ‘ 𝐹 ) ↔ ∀ 𝑗 ∈ ℝ 𝐴 ≤ ( 𝐺 ‘ 𝑗 ) ) ) |