| Step | Hyp | Ref | Expression | 
						
							| 1 |  | limsupval.1 | ⊢ 𝐺  =  ( 𝑘  ∈  ℝ  ↦  sup ( ( ( 𝐹  “  ( 𝑘 [,) +∞ ) )  ∩  ℝ* ) ,  ℝ* ,   <  ) ) | 
						
							| 2 | 1 | limsuple | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( 𝐴  ≤  ( lim sup ‘ 𝐹 )  ↔  ∀ 𝑗  ∈  ℝ 𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 3 | 2 | notbid | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ¬  𝐴  ≤  ( lim sup ‘ 𝐹 )  ↔  ¬  ∀ 𝑗  ∈  ℝ 𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 4 |  | rexnal | ⊢ ( ∃ 𝑗  ∈  ℝ ¬  𝐴  ≤  ( 𝐺 ‘ 𝑗 )  ↔  ¬  ∀ 𝑗  ∈  ℝ 𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) | 
						
							| 5 | 3 4 | bitr4di | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ¬  𝐴  ≤  ( lim sup ‘ 𝐹 )  ↔  ∃ 𝑗  ∈  ℝ ¬  𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 6 |  | simp2 | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  𝐹 : 𝐵 ⟶ ℝ* ) | 
						
							| 7 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 8 | 7 | ssex | ⊢ ( 𝐵  ⊆  ℝ  →  𝐵  ∈  V ) | 
						
							| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  𝐵  ∈  V ) | 
						
							| 10 |  | xrex | ⊢ ℝ*  ∈  V | 
						
							| 11 | 10 | a1i | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ℝ*  ∈  V ) | 
						
							| 12 |  | fex2 | ⊢ ( ( 𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐵  ∈  V  ∧  ℝ*  ∈  V )  →  𝐹  ∈  V ) | 
						
							| 13 | 6 9 11 12 | syl3anc | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  𝐹  ∈  V ) | 
						
							| 14 |  | limsupcl | ⊢ ( 𝐹  ∈  V  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 15 | 13 14 | syl | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( lim sup ‘ 𝐹 )  ∈  ℝ* ) | 
						
							| 16 |  | simp3 | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  𝐴  ∈  ℝ* ) | 
						
							| 17 |  | xrltnle | ⊢ ( ( ( lim sup ‘ 𝐹 )  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ( lim sup ‘ 𝐹 )  <  𝐴  ↔  ¬  𝐴  ≤  ( lim sup ‘ 𝐹 ) ) ) | 
						
							| 18 | 15 16 17 | syl2anc | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ( lim sup ‘ 𝐹 )  <  𝐴  ↔  ¬  𝐴  ≤  ( lim sup ‘ 𝐹 ) ) ) | 
						
							| 19 | 1 | limsupgf | ⊢ 𝐺 : ℝ ⟶ ℝ* | 
						
							| 20 | 19 | ffvelcdmi | ⊢ ( 𝑗  ∈  ℝ  →  ( 𝐺 ‘ 𝑗 )  ∈  ℝ* ) | 
						
							| 21 |  | xrltnle | ⊢ ( ( ( 𝐺 ‘ 𝑗 )  ∈  ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ( 𝐺 ‘ 𝑗 )  <  𝐴  ↔  ¬  𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 22 | 20 16 21 | syl2anr | ⊢ ( ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  ∧  𝑗  ∈  ℝ )  →  ( ( 𝐺 ‘ 𝑗 )  <  𝐴  ↔  ¬  𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 23 | 22 | rexbidva | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ∃ 𝑗  ∈  ℝ ( 𝐺 ‘ 𝑗 )  <  𝐴  ↔  ∃ 𝑗  ∈  ℝ ¬  𝐴  ≤  ( 𝐺 ‘ 𝑗 ) ) ) | 
						
							| 24 | 5 18 23 | 3bitr4d | ⊢ ( ( 𝐵  ⊆  ℝ  ∧  𝐹 : 𝐵 ⟶ ℝ*  ∧  𝐴  ∈  ℝ* )  →  ( ( lim sup ‘ 𝐹 )  <  𝐴  ↔  ∃ 𝑗  ∈  ℝ ( 𝐺 ‘ 𝑗 )  <  𝐴 ) ) |