Metamath Proof Explorer


Theorem limsupmnflem

Description: The superior limit of a function is -oo if and only if every real number is the upper bound of the restriction of the function to an upper interval of real numbers. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupmnflem.a ( 𝜑𝐴 ⊆ ℝ )
limsupmnflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
limsupmnflem.g 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) )
Assertion limsupmnflem ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 limsupmnflem.a ( 𝜑𝐴 ⊆ ℝ )
2 limsupmnflem.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ* )
3 limsupmnflem.g 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) )
4 nfv 𝑘 𝜑
5 reex ℝ ∈ V
6 5 a1i ( 𝜑 → ℝ ∈ V )
7 6 1 ssexd ( 𝜑𝐴 ∈ V )
8 4 7 2 3 limsupval3 ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) )
9 3 rneqi ran 𝐺 = ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) )
10 9 infeq1i inf ( ran 𝐺 , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < )
11 10 a1i ( 𝜑 → inf ( ran 𝐺 , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) )
12 8 11 eqtrd ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) )
13 12 eqeq1d ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) = -∞ ) )
14 nfv 𝑥 𝜑
15 2 fimassd ( 𝜑 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* )
16 15 adantr ( ( 𝜑𝑘 ∈ ℝ ) → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* )
17 16 supxrcld ( ( 𝜑𝑘 ∈ ℝ ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ∈ ℝ* )
18 4 14 17 infxrunb3rnmpt ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) = -∞ ) )
19 15 adantr ( ( 𝜑𝑥 ∈ ℝ ) → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* )
20 ressxr ℝ ⊆ ℝ*
21 20 a1i ( 𝜑 → ℝ ⊆ ℝ* )
22 21 sselda ( ( 𝜑𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* )
23 supxrleub ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ*𝑥 ∈ ℝ* ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) )
24 19 22 23 syl2anc ( ( 𝜑𝑥 ∈ ℝ ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) )
25 24 adantr ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) )
26 2 ffnd ( 𝜑𝐹 Fn 𝐴 )
27 26 ad3antrrr ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝐹 Fn 𝐴 )
28 simplr ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗𝐴 )
29 20 sseli ( 𝑘 ∈ ℝ → 𝑘 ∈ ℝ* )
30 29 ad3antlr ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑘 ∈ ℝ* )
31 pnfxr +∞ ∈ ℝ*
32 31 a1i ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → +∞ ∈ ℝ* )
33 20 a1i ( ( 𝜑𝑗𝐴 ) → ℝ ⊆ ℝ* )
34 1 sselda ( ( 𝜑𝑗𝐴 ) → 𝑗 ∈ ℝ )
35 33 34 sseldd ( ( 𝜑𝑗𝐴 ) → 𝑗 ∈ ℝ* )
36 35 ad4ant13 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗 ∈ ℝ* )
37 simpr ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑘𝑗 )
38 34 ltpnfd ( ( 𝜑𝑗𝐴 ) → 𝑗 < +∞ )
39 38 ad4ant13 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗 < +∞ )
40 30 32 36 37 39 elicod ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) )
41 27 28 40 fnfvimad ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
42 41 adantllr ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
43 simpllr ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 )
44 breq1 ( 𝑦 = ( 𝐹𝑗 ) → ( 𝑦𝑥 ↔ ( 𝐹𝑗 ) ≤ 𝑥 ) )
45 44 rspcva ( ( ( 𝐹𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) → ( 𝐹𝑗 ) ≤ 𝑥 )
46 42 43 45 syl2anc ( ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ≤ 𝑥 )
47 46 adantl4r ( ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) ∧ 𝑗𝐴 ) ∧ 𝑘𝑗 ) → ( 𝐹𝑗 ) ≤ 𝑥 )
48 47 ex ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) ∧ 𝑗𝐴 ) → ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
49 48 ralrimiva ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) → ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
50 49 ex ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 → ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
51 nfcv 𝑗 𝐹
52 26 adantr ( ( 𝜑𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → 𝐹 Fn 𝐴 )
53 simpr ( ( 𝜑𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) )
54 51 52 53 fvelimad ( ( 𝜑𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹𝑗 ) = 𝑦 )
55 54 ad4ant14 ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹𝑗 ) = 𝑦 )
56 nfv 𝑗 ( 𝜑𝑘 ∈ ℝ )
57 nfra1 𝑗𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 )
58 56 57 nfan 𝑗 ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
59 nfv 𝑗 𝑦𝑥
60 29 adantr ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑘 ∈ ℝ* )
61 31 a1i ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → +∞ ∈ ℝ* )
62 elinel2 ( 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) )
63 62 adantl ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) )
64 60 61 63 icogelbd ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑘𝑗 )
65 64 adantlr ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑘𝑗 )
66 elinel1 ( 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → 𝑗𝐴 )
67 66 adantl ( ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑗𝐴 )
68 rspa ( ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ∧ 𝑗𝐴 ) → ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
69 67 68 syldan ( ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
70 69 adantll ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) )
71 65 70 mpd ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝐹𝑗 ) ≤ 𝑥 )
72 id ( ( 𝐹𝑗 ) = 𝑦 → ( 𝐹𝑗 ) = 𝑦 )
73 72 eqcomd ( ( 𝐹𝑗 ) = 𝑦𝑦 = ( 𝐹𝑗 ) )
74 73 adantl ( ( ( 𝐹𝑗 ) ≤ 𝑥 ∧ ( 𝐹𝑗 ) = 𝑦 ) → 𝑦 = ( 𝐹𝑗 ) )
75 simpl ( ( ( 𝐹𝑗 ) ≤ 𝑥 ∧ ( 𝐹𝑗 ) = 𝑦 ) → ( 𝐹𝑗 ) ≤ 𝑥 )
76 74 75 eqbrtrd ( ( ( 𝐹𝑗 ) ≤ 𝑥 ∧ ( 𝐹𝑗 ) = 𝑦 ) → 𝑦𝑥 )
77 76 ex ( ( 𝐹𝑗 ) ≤ 𝑥 → ( ( 𝐹𝑗 ) = 𝑦𝑦𝑥 ) )
78 71 77 syl ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( ( 𝐹𝑗 ) = 𝑦𝑦𝑥 ) )
79 78 adantlll ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( ( 𝐹𝑗 ) = 𝑦𝑦𝑥 ) )
80 79 ex ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → ( ( 𝐹𝑗 ) = 𝑦𝑦𝑥 ) ) )
81 58 59 80 rexlimd ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹𝑗 ) = 𝑦𝑦𝑥 ) )
82 81 imp ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹𝑗 ) = 𝑦 ) → 𝑦𝑥 )
83 55 82 syldan ( ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → 𝑦𝑥 )
84 83 ralrimiva ( ( ( 𝜑𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 )
85 84 adantllr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 )
86 24 ad2antrr ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) )
87 85 86 mpbird ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 )
88 87 ex ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ) )
89 88 25 sylibd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ) )
90 50 89 impbid ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦𝑥 ↔ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
91 25 90 bitrd ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
92 91 rexbidva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
93 92 ralbidva ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
94 13 18 93 3bitr2d ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( 𝐹𝑗 ) ≤ 𝑥 ) ) )