Step |
Hyp |
Ref |
Expression |
1 |
|
limsupmnflem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
limsupmnflem.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℝ* ) |
3 |
|
limsupmnflem.g |
⊢ 𝐺 = ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) |
4 |
|
nfv |
⊢ Ⅎ 𝑘 𝜑 |
5 |
|
reex |
⊢ ℝ ∈ V |
6 |
5
|
a1i |
⊢ ( 𝜑 → ℝ ∈ V ) |
7 |
6 1
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
8 |
4 7 2 3
|
limsupval3 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran 𝐺 , ℝ* , < ) ) |
9 |
3
|
rneqi |
⊢ ran 𝐺 = ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) |
10 |
9
|
infeq1i |
⊢ inf ( ran 𝐺 , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) |
11 |
10
|
a1i |
⊢ ( 𝜑 → inf ( ran 𝐺 , ℝ* , < ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
12 |
8 11
|
eqtrd |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) ) |
13 |
12
|
eqeq1d |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) = -∞ ) ) |
14 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
15 |
2
|
fimassd |
⊢ ( 𝜑 → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ) |
16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ) |
17 |
16
|
supxrcld |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ∈ ℝ* ) |
18 |
4 14 17
|
infxrunb3rnmpt |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ inf ( ran ( 𝑘 ∈ ℝ ↦ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ) , ℝ* , < ) = -∞ ) ) |
19 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ) |
20 |
|
ressxr |
⊢ ℝ ⊆ ℝ* |
21 |
20
|
a1i |
⊢ ( 𝜑 → ℝ ⊆ ℝ* ) |
22 |
21
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → 𝑥 ∈ ℝ* ) |
23 |
|
supxrleub |
⊢ ( ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ⊆ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ) |
24 |
19 22 23
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ) |
26 |
2
|
ffnd |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
27 |
26
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝐹 Fn 𝐴 ) |
28 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ 𝐴 ) |
29 |
20
|
sseli |
⊢ ( 𝑘 ∈ ℝ → 𝑘 ∈ ℝ* ) |
30 |
29
|
ad3antlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ∈ ℝ* ) |
31 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
32 |
31
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → +∞ ∈ ℝ* ) |
33 |
20
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ℝ ⊆ ℝ* ) |
34 |
1
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ℝ ) |
35 |
33 34
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 ∈ ℝ* ) |
36 |
35
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ℝ* ) |
37 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑘 ≤ 𝑗 ) |
38 |
34
|
ltpnfd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝑗 < +∞ ) |
39 |
38
|
ad4ant13 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 < +∞ ) |
40 |
30 32 36 37 39
|
elicod |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) ) |
41 |
27 28 40
|
fnfvimad |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
42 |
41
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
43 |
|
simpllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) |
44 |
|
breq1 |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑗 ) → ( 𝑦 ≤ 𝑥 ↔ ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
45 |
44
|
rspcva |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
46 |
42 43 45
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
47 |
46
|
adantl4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ≤ 𝑗 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
48 |
47
|
ex |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
49 |
48
|
ralrimiva |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) → ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
50 |
49
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 → ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
51 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐹 |
52 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → 𝐹 Fn 𝐴 ) |
53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) |
54 |
51 52 53
|
fvelimad |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) = 𝑦 ) |
55 |
54
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) = 𝑦 ) |
56 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑘 ∈ ℝ ) |
57 |
|
nfra1 |
⊢ Ⅎ 𝑗 ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
58 |
56 57
|
nfan |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
59 |
|
nfv |
⊢ Ⅎ 𝑗 𝑦 ≤ 𝑥 |
60 |
29
|
adantr |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑘 ∈ ℝ* ) |
61 |
31
|
a1i |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → +∞ ∈ ℝ* ) |
62 |
|
elinel2 |
⊢ ( 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) ) |
63 |
62
|
adantl |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑗 ∈ ( 𝑘 [,) +∞ ) ) |
64 |
60 61 63
|
icogelbd |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑘 ≤ 𝑗 ) |
65 |
64
|
adantlr |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑘 ≤ 𝑗 ) |
66 |
|
elinel1 |
⊢ ( 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → 𝑗 ∈ 𝐴 ) |
67 |
66
|
adantl |
⊢ ( ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → 𝑗 ∈ 𝐴 ) |
68 |
|
rspa |
⊢ ( ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ 𝐴 ) → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
69 |
67 68
|
syldan |
⊢ ( ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
70 |
69
|
adantll |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) |
71 |
65 70
|
mpd |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
72 |
|
id |
⊢ ( ( 𝐹 ‘ 𝑗 ) = 𝑦 → ( 𝐹 ‘ 𝑗 ) = 𝑦 ) |
73 |
72
|
eqcomd |
⊢ ( ( 𝐹 ‘ 𝑗 ) = 𝑦 → 𝑦 = ( 𝐹 ‘ 𝑗 ) ) |
74 |
73
|
adantl |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ∧ ( 𝐹 ‘ 𝑗 ) = 𝑦 ) → 𝑦 = ( 𝐹 ‘ 𝑗 ) ) |
75 |
|
simpl |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ∧ ( 𝐹 ‘ 𝑗 ) = 𝑦 ) → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) |
76 |
74 75
|
eqbrtrd |
⊢ ( ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ∧ ( 𝐹 ‘ 𝑗 ) = 𝑦 ) → 𝑦 ≤ 𝑥 ) |
77 |
76
|
ex |
⊢ ( ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 → ( ( 𝐹 ‘ 𝑗 ) = 𝑦 → 𝑦 ≤ 𝑥 ) ) |
78 |
71 77
|
syl |
⊢ ( ( ( 𝑘 ∈ ℝ ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( ( 𝐹 ‘ 𝑗 ) = 𝑦 → 𝑦 ≤ 𝑥 ) ) |
79 |
78
|
adantlll |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ) → ( ( 𝐹 ‘ 𝑗 ) = 𝑦 → 𝑦 ≤ 𝑥 ) ) |
80 |
79
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) → ( ( 𝐹 ‘ 𝑗 ) = 𝑦 → 𝑦 ≤ 𝑥 ) ) ) |
81 |
58 59 80
|
rexlimd |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) = 𝑦 → 𝑦 ≤ 𝑥 ) ) |
82 |
81
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ ∃ 𝑗 ∈ ( 𝐴 ∩ ( 𝑘 [,) +∞ ) ) ( 𝐹 ‘ 𝑗 ) = 𝑦 ) → 𝑦 ≤ 𝑥 ) |
83 |
55 82
|
syldan |
⊢ ( ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ∧ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) ) → 𝑦 ≤ 𝑥 ) |
84 |
83
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) |
85 |
84
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) |
86 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ) |
87 |
85 86
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) ∧ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ) |
88 |
87
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ) ) |
89 |
88 25
|
sylibd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) → ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ) ) |
90 |
50 89
|
impbid |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( ∀ 𝑦 ∈ ( 𝐹 “ ( 𝑘 [,) +∞ ) ) 𝑦 ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
91 |
25 90
|
bitrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) ∧ 𝑘 ∈ ℝ ) → ( sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
92 |
91
|
rexbidva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ ) → ( ∃ 𝑘 ∈ ℝ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
93 |
92
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ sup ( ( 𝐹 “ ( 𝑘 [,) +∞ ) ) , ℝ* , < ) ≤ 𝑥 ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |
94 |
13 18 93
|
3bitr2d |
⊢ ( 𝜑 → ( ( lim sup ‘ 𝐹 ) = -∞ ↔ ∀ 𝑥 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝐴 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) ≤ 𝑥 ) ) ) |