Metamath Proof Explorer


Theorem limsupref

Description: If a sequence is bounded, then the limsup is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupref.j 𝑗 𝐹
limsupref.a ( 𝜑𝐴 ⊆ ℝ )
limsupref.s ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
limsupref.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
limsupref.b ( 𝜑 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑏 ) )
Assertion limsupref ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ )

Proof

Step Hyp Ref Expression
1 limsupref.j 𝑗 𝐹
2 limsupref.a ( 𝜑𝐴 ⊆ ℝ )
3 limsupref.s ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ )
4 limsupref.f ( 𝜑𝐹 : 𝐴 ⟶ ℝ )
5 limsupref.b ( 𝜑 → ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑏 ) )
6 breq2 ( 𝑏 = 𝑦 → ( ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑏 ↔ ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) )
7 6 imbi2d ( 𝑏 = 𝑦 → ( ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑏 ) ↔ ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ) )
8 7 ralbidv ( 𝑏 = 𝑦 → ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑏 ) ↔ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ) )
9 breq1 ( 𝑘 = 𝑖 → ( 𝑘𝑗𝑖𝑗 ) )
10 9 imbi1d ( 𝑘 = 𝑖 → ( ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ↔ ( 𝑖𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ) )
11 10 ralbidv ( 𝑘 = 𝑖 → ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ↔ ∀ 𝑗𝐴 ( 𝑖𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ) )
12 nfv 𝑥 ( 𝑖𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 )
13 nfv 𝑗 𝑖𝑥
14 nfcv 𝑗 abs
15 nfcv 𝑗 𝑥
16 1 15 nffv 𝑗 ( 𝐹𝑥 )
17 14 16 nffv 𝑗 ( abs ‘ ( 𝐹𝑥 ) )
18 nfcv 𝑗
19 nfcv 𝑗 𝑦
20 17 18 19 nfbr 𝑗 ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦
21 13 20 nfim 𝑗 ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 )
22 breq2 ( 𝑗 = 𝑥 → ( 𝑖𝑗𝑖𝑥 ) )
23 2fveq3 ( 𝑗 = 𝑥 → ( abs ‘ ( 𝐹𝑗 ) ) = ( abs ‘ ( 𝐹𝑥 ) ) )
24 23 breq1d ( 𝑗 = 𝑥 → ( ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ↔ ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
25 22 24 imbi12d ( 𝑗 = 𝑥 → ( ( 𝑖𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ↔ ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ) )
26 12 21 25 cbvralw ( ∀ 𝑗𝐴 ( 𝑖𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ↔ ∀ 𝑥𝐴 ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
27 26 a1i ( 𝑘 = 𝑖 → ( ∀ 𝑗𝐴 ( 𝑖𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ↔ ∀ 𝑥𝐴 ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ) )
28 11 27 bitrd ( 𝑘 = 𝑖 → ( ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑦 ) ↔ ∀ 𝑥𝐴 ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) ) )
29 8 28 cbvrex2vw ( ∃ 𝑏 ∈ ℝ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝐴 ( 𝑘𝑗 → ( abs ‘ ( 𝐹𝑗 ) ) ≤ 𝑏 ) ↔ ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ ℝ ∀ 𝑥𝐴 ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
30 5 29 sylib ( 𝜑 → ∃ 𝑦 ∈ ℝ ∃ 𝑖 ∈ ℝ ∀ 𝑥𝐴 ( 𝑖𝑥 → ( abs ‘ ( 𝐹𝑥 ) ) ≤ 𝑦 ) )
31 2 3 4 30 limsupre ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ )