| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							limsupresuz.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 2 | 
							
								
							 | 
							limsupresuz.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 3 | 
							
								
							 | 
							limsupresuz.f | 
							⊢ ( 𝜑  →  𝐹  ∈  𝑉 )  | 
						
						
							| 4 | 
							
								
							 | 
							limsupresuz.d | 
							⊢ ( 𝜑  →  dom  ( 𝐹  ↾  ℝ )  ⊆  ℤ )  | 
						
						
							| 5 | 
							
								
							 | 
							rescom | 
							⊢ ( ( 𝐹  ↾  𝑍 )  ↾  ℝ )  =  ( ( 𝐹  ↾  ℝ )  ↾  𝑍 )  | 
						
						
							| 6 | 
							
								5
							 | 
							fveq2i | 
							⊢ ( lim sup ‘ ( ( 𝐹  ↾  𝑍 )  ↾  ℝ ) )  =  ( lim sup ‘ ( ( 𝐹  ↾  ℝ )  ↾  𝑍 ) )  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝐹  ↾  𝑍 )  ↾  ℝ ) )  =  ( lim sup ‘ ( ( 𝐹  ↾  ℝ )  ↾  𝑍 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							relres | 
							⊢ Rel  ( 𝐹  ↾  ℝ )  | 
						
						
							| 9 | 
							
								8
							 | 
							a1i | 
							⊢ ( 𝜑  →  Rel  ( 𝐹  ↾  ℝ ) )  | 
						
						
							| 10 | 
							
								
							 | 
							relssres | 
							⊢ ( ( Rel  ( 𝐹  ↾  ℝ )  ∧  dom  ( 𝐹  ↾  ℝ )  ⊆  ℤ )  →  ( ( 𝐹  ↾  ℝ )  ↾  ℤ )  =  ( 𝐹  ↾  ℝ ) )  | 
						
						
							| 11 | 
							
								9 4 10
							 | 
							syl2anc | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ℝ )  ↾  ℤ )  =  ( 𝐹  ↾  ℝ ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ℝ )  =  ( ( 𝐹  ↾  ℝ )  ↾  ℤ ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							reseq1d | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ℝ )  ↾  ( 𝑀 [,) +∞ ) )  =  ( ( ( 𝐹  ↾  ℝ )  ↾  ℤ )  ↾  ( 𝑀 [,) +∞ ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							resres | 
							⊢ ( ( ( 𝐹  ↾  ℝ )  ↾  ℤ )  ↾  ( 𝑀 [,) +∞ ) )  =  ( ( 𝐹  ↾  ℝ )  ↾  ( ℤ  ∩  ( 𝑀 [,) +∞ ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( ( ( 𝐹  ↾  ℝ )  ↾  ℤ )  ↾  ( 𝑀 [,) +∞ ) )  =  ( ( 𝐹  ↾  ℝ )  ↾  ( ℤ  ∩  ( 𝑀 [,) +∞ ) ) ) )  | 
						
						
							| 16 | 
							
								1 2
							 | 
							uzinico | 
							⊢ ( 𝜑  →  𝑍  =  ( ℤ  ∩  ( 𝑀 [,) +∞ ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							eqcomd | 
							⊢ ( 𝜑  →  ( ℤ  ∩  ( 𝑀 [,) +∞ ) )  =  𝑍 )  | 
						
						
							| 18 | 
							
								17
							 | 
							reseq2d | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ℝ )  ↾  ( ℤ  ∩  ( 𝑀 [,) +∞ ) ) )  =  ( ( 𝐹  ↾  ℝ )  ↾  𝑍 ) )  | 
						
						
							| 19 | 
							
								13 15 18
							 | 
							3eqtrrd | 
							⊢ ( 𝜑  →  ( ( 𝐹  ↾  ℝ )  ↾  𝑍 )  =  ( ( 𝐹  ↾  ℝ )  ↾  ( 𝑀 [,) +∞ ) ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							fveq2d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝐹  ↾  ℝ )  ↾  𝑍 ) )  =  ( lim sup ‘ ( ( 𝐹  ↾  ℝ )  ↾  ( 𝑀 [,) +∞ ) ) ) )  | 
						
						
							| 21 | 
							
								1
							 | 
							zred | 
							⊢ ( 𝜑  →  𝑀  ∈  ℝ )  | 
						
						
							| 22 | 
							
								
							 | 
							eqid | 
							⊢ ( 𝑀 [,) +∞ )  =  ( 𝑀 [,) +∞ )  | 
						
						
							| 23 | 
							
								3
							 | 
							resexd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  ℝ )  ∈  V )  | 
						
						
							| 24 | 
							
								21 22 23
							 | 
							limsupresico | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝐹  ↾  ℝ )  ↾  ( 𝑀 [,) +∞ ) ) )  =  ( lim sup ‘ ( 𝐹  ↾  ℝ ) ) )  | 
						
						
							| 25 | 
							
								20 24
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝐹  ↾  ℝ )  ↾  𝑍 ) )  =  ( lim sup ‘ ( 𝐹  ↾  ℝ ) ) )  | 
						
						
							| 26 | 
							
								7 25
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝐹  ↾  𝑍 )  ↾  ℝ ) )  =  ( lim sup ‘ ( 𝐹  ↾  ℝ ) ) )  | 
						
						
							| 27 | 
							
								3
							 | 
							resexd | 
							⊢ ( 𝜑  →  ( 𝐹  ↾  𝑍 )  ∈  V )  | 
						
						
							| 28 | 
							
								27
							 | 
							limsupresre | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( ( 𝐹  ↾  𝑍 )  ↾  ℝ ) )  =  ( lim sup ‘ ( 𝐹  ↾  𝑍 ) ) )  | 
						
						
							| 29 | 
							
								3
							 | 
							limsupresre | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝐹  ↾  ℝ ) )  =  ( lim sup ‘ 𝐹 ) )  | 
						
						
							| 30 | 
							
								26 28 29
							 | 
							3eqtr3d | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝐹  ↾  𝑍 ) )  =  ( lim sup ‘ 𝐹 ) )  |