| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limsupubuz2.1 |
⊢ Ⅎ 𝑗 𝜑 |
| 2 |
|
limsupubuz2.2 |
⊢ Ⅎ 𝑗 𝐹 |
| 3 |
|
limsupubuz2.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
limsupubuz2.4 |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
limsupubuz2.5 |
⊢ ( 𝜑 → 𝐹 : 𝑍 ⟶ ℝ* ) |
| 6 |
|
limsupubuz2.6 |
⊢ ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ ) |
| 7 |
4
|
uzssre2 |
⊢ 𝑍 ⊆ ℝ |
| 8 |
7
|
a1i |
⊢ ( 𝜑 → 𝑍 ⊆ ℝ ) |
| 9 |
1 2 8 5 6
|
limsupub2 |
⊢ ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) |
| 10 |
4
|
rexuzre |
⊢ ( 𝑀 ∈ ℤ → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) < +∞ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) ) |
| 11 |
3 10
|
syl |
⊢ ( 𝜑 → ( ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) < +∞ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗 ∈ 𝑍 ( 𝑘 ≤ 𝑗 → ( 𝐹 ‘ 𝑗 ) < +∞ ) ) ) |
| 12 |
9 11
|
mpbird |
⊢ ( 𝜑 → ∃ 𝑘 ∈ 𝑍 ∀ 𝑗 ∈ ( ℤ≥ ‘ 𝑘 ) ( 𝐹 ‘ 𝑗 ) < +∞ ) |