Metamath Proof Explorer


Theorem limsupubuz2

Description: A sequence with values in the extended reals, and with limsup that is not +oo , is eventually less than +oo . (Contributed by Glauco Siliprandi, 23-Apr-2023)

Ref Expression
Hypotheses limsupubuz2.1 𝑗 𝜑
limsupubuz2.2 𝑗 𝐹
limsupubuz2.3 ( 𝜑𝑀 ∈ ℤ )
limsupubuz2.4 𝑍 = ( ℤ𝑀 )
limsupubuz2.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
limsupubuz2.6 ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ )
Assertion limsupubuz2 ( 𝜑 → ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) < +∞ )

Proof

Step Hyp Ref Expression
1 limsupubuz2.1 𝑗 𝜑
2 limsupubuz2.2 𝑗 𝐹
3 limsupubuz2.3 ( 𝜑𝑀 ∈ ℤ )
4 limsupubuz2.4 𝑍 = ( ℤ𝑀 )
5 limsupubuz2.5 ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
6 limsupubuz2.6 ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ )
7 4 uzssre2 𝑍 ⊆ ℝ
8 7 a1i ( 𝜑𝑍 ⊆ ℝ )
9 1 2 8 5 6 limsupub2 ( 𝜑 → ∃ 𝑘 ∈ ℝ ∀ 𝑗𝑍 ( 𝑘𝑗 → ( 𝐹𝑗 ) < +∞ ) )
10 4 rexuzre ( 𝑀 ∈ ℤ → ( ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) < +∞ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝑍 ( 𝑘𝑗 → ( 𝐹𝑗 ) < +∞ ) ) )
11 3 10 syl ( 𝜑 → ( ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) < +∞ ↔ ∃ 𝑘 ∈ ℝ ∀ 𝑗𝑍 ( 𝑘𝑗 → ( 𝐹𝑗 ) < +∞ ) ) )
12 9 11 mpbird ( 𝜑 → ∃ 𝑘𝑍𝑗 ∈ ( ℤ𝑘 ) ( 𝐹𝑗 ) < +∞ )