Metamath Proof Explorer


Theorem limsupvaluz2

Description: The superior limit, when the domain of a real-valued function is a set of upper integers, and the superior limit is real. (Contributed by Glauco Siliprandi, 23-Oct-2021)

Ref Expression
Hypotheses limsupvaluz2.m ( 𝜑𝑀 ∈ ℤ )
limsupvaluz2.z 𝑍 = ( ℤ𝑀 )
limsupvaluz2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
limsupvaluz2.r ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ )
Assertion limsupvaluz2 ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ , < ) )

Proof

Step Hyp Ref Expression
1 limsupvaluz2.m ( 𝜑𝑀 ∈ ℤ )
2 limsupvaluz2.z 𝑍 = ( ℤ𝑀 )
3 limsupvaluz2.f ( 𝜑𝐹 : 𝑍 ⟶ ℝ )
4 limsupvaluz2.r ( 𝜑 → ( lim sup ‘ 𝐹 ) ∈ ℝ )
5 3 frexr ( 𝜑𝐹 : 𝑍 ⟶ ℝ* )
6 1 2 5 limsupvaluz ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ* , < ) )
7 3 adantr ( ( 𝜑𝑛𝑍 ) → 𝐹 : 𝑍 ⟶ ℝ )
8 id ( 𝑛𝑍𝑛𝑍 )
9 2 8 uzssd2 ( 𝑛𝑍 → ( ℤ𝑛 ) ⊆ 𝑍 )
10 9 adantl ( ( 𝜑𝑛𝑍 ) → ( ℤ𝑛 ) ⊆ 𝑍 )
11 7 10 feqresmpt ( ( 𝜑𝑛𝑍 ) → ( 𝐹 ↾ ( ℤ𝑛 ) ) = ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( 𝐹𝑚 ) ) )
12 11 rneqd ( ( 𝜑𝑛𝑍 ) → ran ( 𝐹 ↾ ( ℤ𝑛 ) ) = ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( 𝐹𝑚 ) ) )
13 12 supeq1d ( ( 𝜑𝑛𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( 𝐹𝑚 ) ) , ℝ* , < ) )
14 nfcv 𝑚 𝐹
15 4 renepnfd ( 𝜑 → ( lim sup ‘ 𝐹 ) ≠ +∞ )
16 14 2 3 15 limsupubuz ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑚𝑍 ( 𝐹𝑚 ) ≤ 𝑥 )
17 16 adantr ( ( 𝜑𝑛𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚𝑍 ( 𝐹𝑚 ) ≤ 𝑥 )
18 ssralv ( ( ℤ𝑛 ) ⊆ 𝑍 → ( ∀ 𝑚𝑍 ( 𝐹𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ𝑛 ) ( 𝐹𝑚 ) ≤ 𝑥 ) )
19 9 18 syl ( 𝑛𝑍 → ( ∀ 𝑚𝑍 ( 𝐹𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ𝑛 ) ( 𝐹𝑚 ) ≤ 𝑥 ) )
20 19 adantl ( ( 𝜑𝑛𝑍 ) → ( ∀ 𝑚𝑍 ( 𝐹𝑚 ) ≤ 𝑥 → ∀ 𝑚 ∈ ( ℤ𝑛 ) ( 𝐹𝑚 ) ≤ 𝑥 ) )
21 20 reximdv ( ( 𝜑𝑛𝑍 ) → ( ∃ 𝑥 ∈ ℝ ∀ 𝑚𝑍 ( 𝐹𝑚 ) ≤ 𝑥 → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ𝑛 ) ( 𝐹𝑚 ) ≤ 𝑥 ) )
22 17 21 mpd ( ( 𝜑𝑛𝑍 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ𝑛 ) ( 𝐹𝑚 ) ≤ 𝑥 )
23 nfv 𝑚 ( 𝜑𝑛𝑍 )
24 2 eluzelz2 ( 𝑛𝑍𝑛 ∈ ℤ )
25 uzid ( 𝑛 ∈ ℤ → 𝑛 ∈ ( ℤ𝑛 ) )
26 ne0i ( 𝑛 ∈ ( ℤ𝑛 ) → ( ℤ𝑛 ) ≠ ∅ )
27 24 25 26 3syl ( 𝑛𝑍 → ( ℤ𝑛 ) ≠ ∅ )
28 27 adantl ( ( 𝜑𝑛𝑍 ) → ( ℤ𝑛 ) ≠ ∅ )
29 7 adantr ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝐹 : 𝑍 ⟶ ℝ )
30 10 sselda ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → 𝑚𝑍 )
31 29 30 ffvelrnd ( ( ( 𝜑𝑛𝑍 ) ∧ 𝑚 ∈ ( ℤ𝑛 ) ) → ( 𝐹𝑚 ) ∈ ℝ )
32 23 28 31 supxrre3rnmpt ( ( 𝜑𝑛𝑍 ) → ( sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( 𝐹𝑚 ) ) , ℝ* , < ) ∈ ℝ ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑚 ∈ ( ℤ𝑛 ) ( 𝐹𝑚 ) ≤ 𝑥 ) )
33 22 32 mpbird ( ( 𝜑𝑛𝑍 ) → sup ( ran ( 𝑚 ∈ ( ℤ𝑛 ) ↦ ( 𝐹𝑚 ) ) , ℝ* , < ) ∈ ℝ )
34 13 33 eqeltrd ( ( 𝜑𝑛𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ∈ ℝ )
35 34 fmpttd ( 𝜑 → ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) : 𝑍 ⟶ ℝ )
36 35 frnd ( 𝜑 → ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) ⊆ ℝ )
37 nfv 𝑛 𝜑
38 eqid ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) = ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
39 1 2 uzn0d ( 𝜑𝑍 ≠ ∅ )
40 37 34 38 39 rnmptn0 ( 𝜑 → ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) ≠ ∅ )
41 nfcv 𝑗 𝐹
42 41 1 2 5 limsupre3uz ( 𝜑 → ( ( lim sup ‘ 𝐹 ) ∈ ℝ ↔ ( ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ( 𝐹𝑗 ) ≤ 𝑥 ) ) )
43 4 42 mpbid ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑗 ) ∧ ∃ 𝑥 ∈ ℝ ∃ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ( 𝐹𝑗 ) ≤ 𝑥 ) )
44 43 simpld ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑗 ) )
45 simp-4r ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → 𝑥 ∈ ℝ )
46 45 rexrd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → 𝑥 ∈ ℝ* )
47 5 3ad2ant1 ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → 𝐹 : 𝑍 ⟶ ℝ* )
48 2 uztrn2 ( ( 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → 𝑗𝑍 )
49 48 3adant1 ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → 𝑗𝑍 )
50 47 49 ffvelrnd ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ( 𝐹𝑗 ) ∈ ℝ* )
51 50 ad5ant134 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) ∈ ℝ* )
52 rnresss ran ( 𝐹 ↾ ( ℤ𝑖 ) ) ⊆ ran 𝐹
53 52 a1i ( ( 𝜑𝑖𝑍 ) → ran ( 𝐹 ↾ ( ℤ𝑖 ) ) ⊆ ran 𝐹 )
54 3 frnd ( 𝜑 → ran 𝐹 ⊆ ℝ )
55 54 adantr ( ( 𝜑𝑖𝑍 ) → ran 𝐹 ⊆ ℝ )
56 53 55 sstrd ( ( 𝜑𝑖𝑍 ) → ran ( 𝐹 ↾ ( ℤ𝑖 ) ) ⊆ ℝ )
57 ressxr ℝ ⊆ ℝ*
58 57 a1i ( ( 𝜑𝑖𝑍 ) → ℝ ⊆ ℝ* )
59 56 58 sstrd ( ( 𝜑𝑖𝑍 ) → ran ( 𝐹 ↾ ( ℤ𝑖 ) ) ⊆ ℝ* )
60 59 supxrcld ( ( 𝜑𝑖𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ∈ ℝ* )
61 60 ad5ant13 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ∈ ℝ* )
62 simpr ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → 𝑥 ≤ ( 𝐹𝑗 ) )
63 59 3adant3 ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ran ( 𝐹 ↾ ( ℤ𝑖 ) ) ⊆ ℝ* )
64 fvres ( 𝑗 ∈ ( ℤ𝑖 ) → ( ( 𝐹 ↾ ( ℤ𝑖 ) ) ‘ 𝑗 ) = ( 𝐹𝑗 ) )
65 64 eqcomd ( 𝑗 ∈ ( ℤ𝑖 ) → ( 𝐹𝑗 ) = ( ( 𝐹 ↾ ( ℤ𝑖 ) ) ‘ 𝑗 ) )
66 65 3ad2ant3 ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ( 𝐹𝑗 ) = ( ( 𝐹 ↾ ( ℤ𝑖 ) ) ‘ 𝑗 ) )
67 3 ffnd ( 𝜑𝐹 Fn 𝑍 )
68 67 adantr ( ( 𝜑𝑖𝑍 ) → 𝐹 Fn 𝑍 )
69 id ( 𝑖𝑍𝑖𝑍 )
70 2 69 uzssd2 ( 𝑖𝑍 → ( ℤ𝑖 ) ⊆ 𝑍 )
71 70 adantl ( ( 𝜑𝑖𝑍 ) → ( ℤ𝑖 ) ⊆ 𝑍 )
72 fnssres ( ( 𝐹 Fn 𝑍 ∧ ( ℤ𝑖 ) ⊆ 𝑍 ) → ( 𝐹 ↾ ( ℤ𝑖 ) ) Fn ( ℤ𝑖 ) )
73 68 71 72 syl2anc ( ( 𝜑𝑖𝑍 ) → ( 𝐹 ↾ ( ℤ𝑖 ) ) Fn ( ℤ𝑖 ) )
74 73 3adant3 ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ( 𝐹 ↾ ( ℤ𝑖 ) ) Fn ( ℤ𝑖 ) )
75 simp3 ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → 𝑗 ∈ ( ℤ𝑖 ) )
76 fnfvelrn ( ( ( 𝐹 ↾ ( ℤ𝑖 ) ) Fn ( ℤ𝑖 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) → ( ( 𝐹 ↾ ( ℤ𝑖 ) ) ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ𝑖 ) ) )
77 74 75 76 syl2anc ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ( ( 𝐹 ↾ ( ℤ𝑖 ) ) ‘ 𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ𝑖 ) ) )
78 66 77 eqeltrd ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ( 𝐹𝑗 ) ∈ ran ( 𝐹 ↾ ( ℤ𝑖 ) ) )
79 eqid sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < )
80 63 78 79 supxrubd ( ( 𝜑𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) ) → ( 𝐹𝑗 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) )
81 80 ad5ant134 ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → ( 𝐹𝑗 ) ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) )
82 46 51 61 62 81 xrletrd ( ( ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) ∧ 𝑗 ∈ ( ℤ𝑖 ) ) ∧ 𝑥 ≤ ( 𝐹𝑗 ) ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) )
83 82 rexlimdva2 ( ( ( 𝜑𝑥 ∈ ℝ ) ∧ 𝑖𝑍 ) → ( ∃ 𝑗 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑗 ) → 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) )
84 83 ralimdva ( ( 𝜑𝑥 ∈ ℝ ) → ( ∀ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑗 ) → ∀ 𝑖𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) )
85 84 reximdva ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍𝑗 ∈ ( ℤ𝑖 ) 𝑥 ≤ ( 𝐹𝑗 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) )
86 44 85 mpd ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) )
87 86 idi ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) )
88 fveq2 ( 𝑛 = 𝑖 → ( ℤ𝑛 ) = ( ℤ𝑖 ) )
89 88 reseq2d ( 𝑛 = 𝑖 → ( 𝐹 ↾ ( ℤ𝑛 ) ) = ( 𝐹 ↾ ( ℤ𝑖 ) ) )
90 89 rneqd ( 𝑛 = 𝑖 → ran ( 𝐹 ↾ ( ℤ𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ𝑖 ) ) )
91 90 supeq1d ( 𝑛 = 𝑖 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) )
92 eqcom ( 𝑛 = 𝑖𝑖 = 𝑛 )
93 92 imbi1i ( ( 𝑛 = 𝑖 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) ↔ ( 𝑖 = 𝑛 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) )
94 eqcom ( sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ↔ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
95 94 imbi2i ( ( 𝑖 = 𝑛 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) ↔ ( 𝑖 = 𝑛 → sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
96 93 95 bitri ( ( 𝑛 = 𝑖 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ) ↔ ( 𝑖 = 𝑛 → sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
97 91 96 mpbi ( 𝑖 = 𝑛 → sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
98 97 breq2d ( 𝑖 = 𝑛 → ( 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ↔ 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) )
99 98 cbvralvw ( ∀ 𝑖𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ↔ ∀ 𝑛𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
100 99 rexbii ( ∃ 𝑥 ∈ ℝ ∀ 𝑖𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑖 ) ) , ℝ* , < ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
101 87 100 sylib ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) )
102 34 elexd ( ( 𝜑𝑛𝑍 ) → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ∈ V )
103 37 102 rnmptbd2 ( 𝜑 → ( ∃ 𝑥 ∈ ℝ ∀ 𝑛𝑍 𝑥 ≤ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ↔ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) 𝑥𝑦 ) )
104 101 103 mpbid ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) 𝑥𝑦 )
105 infxrre ( ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) ⊆ ℝ ∧ ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) ≠ ∅ ∧ ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) 𝑥𝑦 ) → inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) )
106 36 40 104 105 syl3anc ( 𝜑 → inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ* , < ) = inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) )
107 fveq2 ( 𝑛 = 𝑘 → ( ℤ𝑛 ) = ( ℤ𝑘 ) )
108 107 reseq2d ( 𝑛 = 𝑘 → ( 𝐹 ↾ ( ℤ𝑛 ) ) = ( 𝐹 ↾ ( ℤ𝑘 ) ) )
109 108 rneqd ( 𝑛 = 𝑘 → ran ( 𝐹 ↾ ( ℤ𝑛 ) ) = ran ( 𝐹 ↾ ( ℤ𝑘 ) ) )
110 109 supeq1d ( 𝑛 = 𝑘 → sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) = sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) )
111 110 cbvmptv ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) = ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) )
112 111 rneqi ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) = ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) )
113 112 infeq1i inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ , < )
114 113 a1i ( 𝜑 → inf ( ran ( 𝑛𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑛 ) ) , ℝ* , < ) ) , ℝ , < ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ , < ) )
115 6 106 114 3eqtrd ( 𝜑 → ( lim sup ‘ 𝐹 ) = inf ( ran ( 𝑘𝑍 ↦ sup ( ran ( 𝐹 ↾ ( ℤ𝑘 ) ) , ℝ* , < ) ) , ℝ , < ) )