| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							limsupvaluzmpt.j | 
							⊢ Ⅎ 𝑗 𝜑  | 
						
						
							| 2 | 
							
								
							 | 
							limsupvaluzmpt.m | 
							⊢ ( 𝜑  →  𝑀  ∈  ℤ )  | 
						
						
							| 3 | 
							
								
							 | 
							limsupvaluzmpt.z | 
							⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 )  | 
						
						
							| 4 | 
							
								
							 | 
							limsupvaluzmpt.b | 
							⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝐵  ∈  ℝ* )  | 
						
						
							| 5 | 
							
								1 4
							 | 
							fmptd2f | 
							⊢ ( 𝜑  →  ( 𝑗  ∈  𝑍  ↦  𝐵 ) : 𝑍 ⟶ ℝ* )  | 
						
						
							| 6 | 
							
								2 3 5
							 | 
							limsupvaluz | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  𝐵 ) )  =  inf ( ran  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 7 | 
							
								3
							 | 
							uzssd3 | 
							⊢ ( 𝑘  ∈  𝑍  →  ( ℤ≥ ‘ 𝑘 )  ⊆  𝑍 )  | 
						
						
							| 8 | 
							
								7
							 | 
							resmptd | 
							⊢ ( 𝑘  ∈  𝑍  →  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) )  =  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							rneqd | 
							⊢ ( 𝑘  ∈  𝑍  →  ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) )  =  ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							supeq1d | 
							⊢ ( 𝑘  ∈  𝑍  →  sup ( ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) ) ,  ℝ* ,   <  )  =  sup ( ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) ,  ℝ* ,   <  ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							mpteq2ia | 
							⊢ ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) ,  ℝ* ,   <  ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							a1i | 
							⊢ ( 𝜑  →  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) ) ,  ℝ* ,   <  ) )  =  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) ,  ℝ* ,   <  ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							rneqd | 
							⊢ ( 𝜑  →  ran  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) ) ,  ℝ* ,   <  ) )  =  ran  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) ,  ℝ* ,   <  ) ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							infeq1d | 
							⊢ ( 𝜑  →  inf ( ran  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( ( 𝑗  ∈  𝑍  ↦  𝐵 )  ↾  ( ℤ≥ ‘ 𝑘 ) ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  )  =  inf ( ran  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  | 
						
						
							| 15 | 
							
								6 14
							 | 
							eqtrd | 
							⊢ ( 𝜑  →  ( lim sup ‘ ( 𝑗  ∈  𝑍  ↦  𝐵 ) )  =  inf ( ran  ( 𝑘  ∈  𝑍  ↦  sup ( ran  ( 𝑗  ∈  ( ℤ≥ ‘ 𝑘 )  ↦  𝐵 ) ,  ℝ* ,   <  ) ) ,  ℝ* ,   <  ) )  |