Description: A limit ordinal is its own supremum (union). (Contributed by NM, 4-May-1995)
Ref | Expression | ||
---|---|---|---|
Assertion | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
2 | 1 | simp3bi | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |