Description: A limit ordinal is its own supremum (union). Lemma 2.13 of Schloeder p. 5. (Contributed by NM, 4-May-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-lim | ⊢ ( Lim 𝐴 ↔ ( Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴 ) ) | |
| 2 | 1 | simp3bi | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) |