Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006)
Ref | Expression | ||
---|---|---|---|
Assertion | limuni2 | ⊢ ( Lim 𝐴 → Lim ∪ 𝐴 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni | ⊢ ( Lim 𝐴 → 𝐴 = ∪ 𝐴 ) | |
2 | limeq | ⊢ ( 𝐴 = ∪ 𝐴 → ( Lim 𝐴 ↔ Lim ∪ 𝐴 ) ) | |
3 | 1 2 | syl | ⊢ ( Lim 𝐴 → ( Lim 𝐴 ↔ Lim ∪ 𝐴 ) ) |
4 | 3 | ibi | ⊢ ( Lim 𝐴 → Lim ∪ 𝐴 ) |