Metamath Proof Explorer


Theorem limuni2

Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006)

Ref Expression
Assertion limuni2 ( Lim 𝐴 → Lim 𝐴 )

Proof

Step Hyp Ref Expression
1 limuni ( Lim 𝐴𝐴 = 𝐴 )
2 limeq ( 𝐴 = 𝐴 → ( Lim 𝐴 ↔ Lim 𝐴 ) )
3 1 2 syl ( Lim 𝐴 → ( Lim 𝐴 ↔ Lim 𝐴 ) )
4 3 ibi ( Lim 𝐴 → Lim 𝐴 )