| Step |
Hyp |
Ref |
Expression |
| 1 |
|
limeq |
⊢ ( 𝑥 = 𝑧 → ( Lim 𝑥 ↔ Lim 𝑧 ) ) |
| 2 |
1
|
rspcv |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → Lim 𝑧 ) ) |
| 3 |
|
vex |
⊢ 𝑧 ∈ V |
| 4 |
|
limelon |
⊢ ( ( 𝑧 ∈ V ∧ Lim 𝑧 ) → 𝑧 ∈ On ) |
| 5 |
3 4
|
mpan |
⊢ ( Lim 𝑧 → 𝑧 ∈ On ) |
| 6 |
2 5
|
syl6com |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ On ) ) |
| 7 |
6
|
ssrdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → 𝐴 ⊆ On ) |
| 8 |
|
ssorduni |
⊢ ( 𝐴 ⊆ On → Ord ∪ 𝐴 ) |
| 9 |
7 8
|
syl |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → Ord ∪ 𝐴 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → Ord ∪ 𝐴 ) |
| 11 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐴 ) |
| 12 |
|
0ellim |
⊢ ( Lim 𝑧 → ∅ ∈ 𝑧 ) |
| 13 |
|
elunii |
⊢ ( ( ∅ ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → ∅ ∈ ∪ 𝐴 ) |
| 14 |
13
|
expcom |
⊢ ( 𝑧 ∈ 𝐴 → ( ∅ ∈ 𝑧 → ∅ ∈ ∪ 𝐴 ) ) |
| 15 |
12 14
|
syl5 |
⊢ ( 𝑧 ∈ 𝐴 → ( Lim 𝑧 → ∅ ∈ ∪ 𝐴 ) ) |
| 16 |
2 15
|
syld |
⊢ ( 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∅ ∈ ∪ 𝐴 ) ) |
| 17 |
16
|
exlimiv |
⊢ ( ∃ 𝑧 𝑧 ∈ 𝐴 → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∅ ∈ ∪ 𝐴 ) ) |
| 18 |
11 17
|
sylbi |
⊢ ( 𝐴 ≠ ∅ → ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∅ ∈ ∪ 𝐴 ) ) |
| 19 |
18
|
imp |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → ∅ ∈ ∪ 𝐴 ) |
| 20 |
|
eluni2 |
⊢ ( 𝑦 ∈ ∪ 𝐴 ↔ ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 ) |
| 21 |
1
|
rspccv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑧 ∈ 𝐴 → Lim 𝑧 ) ) |
| 22 |
|
limsuc |
⊢ ( Lim 𝑧 → ( 𝑦 ∈ 𝑧 ↔ suc 𝑦 ∈ 𝑧 ) ) |
| 23 |
22
|
anbi1d |
⊢ ( Lim 𝑧 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ↔ ( suc 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) ) ) |
| 24 |
|
elunii |
⊢ ( ( suc 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → suc 𝑦 ∈ ∪ 𝐴 ) |
| 25 |
23 24
|
biimtrdi |
⊢ ( Lim 𝑧 → ( ( 𝑦 ∈ 𝑧 ∧ 𝑧 ∈ 𝐴 ) → suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 26 |
25
|
expd |
⊢ ( Lim 𝑧 → ( 𝑦 ∈ 𝑧 → ( 𝑧 ∈ 𝐴 → suc 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 27 |
26
|
com3r |
⊢ ( 𝑧 ∈ 𝐴 → ( Lim 𝑧 → ( 𝑦 ∈ 𝑧 → suc 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 28 |
21 27
|
sylcom |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑧 ∈ 𝐴 → ( 𝑦 ∈ 𝑧 → suc 𝑦 ∈ ∪ 𝐴 ) ) ) |
| 29 |
28
|
rexlimdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( ∃ 𝑧 ∈ 𝐴 𝑦 ∈ 𝑧 → suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 30 |
20 29
|
biimtrid |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ( 𝑦 ∈ ∪ 𝐴 → suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 31 |
30
|
ralrimiv |
⊢ ( ∀ 𝑥 ∈ 𝐴 Lim 𝑥 → ∀ 𝑦 ∈ ∪ 𝐴 suc 𝑦 ∈ ∪ 𝐴 ) |
| 32 |
31
|
adantl |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → ∀ 𝑦 ∈ ∪ 𝐴 suc 𝑦 ∈ ∪ 𝐴 ) |
| 33 |
|
dflim4 |
⊢ ( Lim ∪ 𝐴 ↔ ( Ord ∪ 𝐴 ∧ ∅ ∈ ∪ 𝐴 ∧ ∀ 𝑦 ∈ ∪ 𝐴 suc 𝑦 ∈ ∪ 𝐴 ) ) |
| 34 |
10 19 32 33
|
syl3anbrc |
⊢ ( ( 𝐴 ≠ ∅ ∧ ∀ 𝑥 ∈ 𝐴 Lim 𝑥 ) → Lim ∪ 𝐴 ) |