| Step |
Hyp |
Ref |
Expression |
| 1 |
|
line2.i |
⊢ 𝐼 = { 1 , 2 } |
| 2 |
|
line2.e |
⊢ 𝐸 = ( ℝ^ ‘ 𝐼 ) |
| 3 |
|
line2.p |
⊢ 𝑃 = ( ℝ ↑m 𝐼 ) |
| 4 |
|
line2.l |
⊢ 𝐿 = ( LineM ‘ 𝐸 ) |
| 5 |
|
line2.g |
⊢ 𝐺 = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } |
| 6 |
|
line2x.x |
⊢ 𝑋 = { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } |
| 7 |
|
line2x.y |
⊢ 𝑌 = { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } |
| 8 |
5
|
a1i |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → 𝐺 = { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } ) |
| 9 |
|
1ex |
⊢ 1 ∈ V |
| 10 |
|
2ex |
⊢ 2 ∈ V |
| 11 |
9 10
|
pm3.2i |
⊢ ( 1 ∈ V ∧ 2 ∈ V ) |
| 12 |
|
c0ex |
⊢ 0 ∈ V |
| 13 |
12
|
jctl |
⊢ ( 𝑀 ∈ ℝ → ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ) |
| 14 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 15 |
14
|
a1i |
⊢ ( 𝑀 ∈ ℝ → 1 ≠ 2 ) |
| 16 |
|
fprg |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 0 , 𝑀 } ) |
| 17 |
|
0red |
⊢ ( ( 1 ∈ V ∧ 2 ∈ V ) → 0 ∈ ℝ ) |
| 18 |
|
simpr |
⊢ ( ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) → 𝑀 ∈ ℝ ) |
| 19 |
17 18
|
anim12i |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 20 |
19
|
3adant3 |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) ) |
| 21 |
|
prssi |
⊢ ( ( 0 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → { 0 , 𝑀 } ⊆ ℝ ) |
| 22 |
20 21
|
syl |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 0 , 𝑀 } ⊆ ℝ ) |
| 23 |
16 22
|
fssd |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 0 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
| 24 |
11 13 15 23
|
mp3an2i |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
| 25 |
1
|
feq2i |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
| 26 |
24 25
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
| 27 |
|
reex |
⊢ ℝ ∈ V |
| 28 |
|
prex |
⊢ { 1 , 2 } ∈ V |
| 29 |
1 28
|
eqeltri |
⊢ 𝐼 ∈ V |
| 30 |
27 29
|
elmap |
⊢ ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
| 31 |
26 30
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ) |
| 32 |
31 6 3
|
3eltr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑋 ∈ 𝑃 ) |
| 33 |
9
|
jctl |
⊢ ( 𝑀 ∈ ℝ → ( 1 ∈ V ∧ 𝑀 ∈ ℝ ) ) |
| 34 |
|
fprg |
⊢ ( ( ( 1 ∈ V ∧ 2 ∈ V ) ∧ ( 1 ∈ V ∧ 𝑀 ∈ ℝ ) ∧ 1 ≠ 2 ) → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 1 , 𝑀 } ) |
| 35 |
11 33 15 34
|
mp3an2i |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ { 1 , 𝑀 } ) |
| 36 |
|
1re |
⊢ 1 ∈ ℝ |
| 37 |
|
prssi |
⊢ ( ( 1 ∈ ℝ ∧ 𝑀 ∈ ℝ ) → { 1 , 𝑀 } ⊆ ℝ ) |
| 38 |
36 37
|
mpan |
⊢ ( 𝑀 ∈ ℝ → { 1 , 𝑀 } ⊆ ℝ ) |
| 39 |
35 38
|
fssd |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
| 40 |
1
|
feq2i |
⊢ ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ↔ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : { 1 , 2 } ⟶ ℝ ) |
| 41 |
39 40
|
sylibr |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) |
| 42 |
27 29
|
pm3.2i |
⊢ ( ℝ ∈ V ∧ 𝐼 ∈ V ) |
| 43 |
|
elmapg |
⊢ ( ( ℝ ∈ V ∧ 𝐼 ∈ V ) → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) ) |
| 44 |
42 43
|
mp1i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ↔ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } : 𝐼 ⟶ ℝ ) ) |
| 45 |
41 44
|
mpbird |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ∈ ( ℝ ↑m 𝐼 ) ) |
| 46 |
45 7 3
|
3eltr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑌 ∈ 𝑃 ) |
| 47 |
|
opex |
⊢ 〈 1 , 0 〉 ∈ V |
| 48 |
|
opex |
⊢ 〈 2 , 𝑀 〉 ∈ V |
| 49 |
47 48
|
pm3.2i |
⊢ ( 〈 1 , 0 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) |
| 50 |
|
opex |
⊢ 〈 1 , 1 〉 ∈ V |
| 51 |
50 48
|
pm3.2i |
⊢ ( 〈 1 , 1 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) |
| 52 |
49 51
|
pm3.2i |
⊢ ( ( 〈 1 , 0 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ∧ ( 〈 1 , 1 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ) |
| 53 |
14
|
orci |
⊢ ( 1 ≠ 2 ∨ 0 ≠ 𝑀 ) |
| 54 |
9 12
|
opthne |
⊢ ( 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ↔ ( 1 ≠ 2 ∨ 0 ≠ 𝑀 ) ) |
| 55 |
53 54
|
mpbir |
⊢ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 |
| 56 |
55
|
a1i |
⊢ ( 𝑀 ∈ ℝ → 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) |
| 57 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 58 |
57
|
olci |
⊢ ( 1 ≠ 1 ∨ 0 ≠ 1 ) |
| 59 |
9 12
|
opthne |
⊢ ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ↔ ( 1 ≠ 1 ∨ 0 ≠ 1 ) ) |
| 60 |
58 59
|
mpbir |
⊢ 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 |
| 61 |
56 60
|
jctil |
⊢ ( 𝑀 ∈ ℝ → ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ∧ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) ) |
| 62 |
61
|
orcd |
⊢ ( 𝑀 ∈ ℝ → ( ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ∧ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) ∨ ( 〈 2 , 𝑀 〉 ≠ 〈 1 , 1 〉 ∧ 〈 2 , 𝑀 〉 ≠ 〈 2 , 𝑀 〉 ) ) ) |
| 63 |
|
prneimg |
⊢ ( ( ( 〈 1 , 0 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ∧ ( 〈 1 , 1 〉 ∈ V ∧ 〈 2 , 𝑀 〉 ∈ V ) ) → ( ( ( 〈 1 , 0 〉 ≠ 〈 1 , 1 〉 ∧ 〈 1 , 0 〉 ≠ 〈 2 , 𝑀 〉 ) ∨ ( 〈 2 , 𝑀 〉 ≠ 〈 1 , 1 〉 ∧ 〈 2 , 𝑀 〉 ≠ 〈 2 , 𝑀 〉 ) ) → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ≠ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ) ) |
| 64 |
52 62 63
|
mpsyl |
⊢ ( 𝑀 ∈ ℝ → { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ≠ { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ) |
| 65 |
64 6 7
|
3netr4g |
⊢ ( 𝑀 ∈ ℝ → 𝑋 ≠ 𝑌 ) |
| 66 |
32 46 65
|
3jca |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) |
| 67 |
66
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) ) |
| 68 |
|
eqid |
⊢ ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) |
| 69 |
|
eqid |
⊢ ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) |
| 70 |
|
eqid |
⊢ ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) |
| 71 |
1 2 3 4 68 69 70
|
rrx2linest |
⊢ ( ( 𝑋 ∈ 𝑃 ∧ 𝑌 ∈ 𝑃 ∧ 𝑋 ≠ 𝑌 ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) |
| 72 |
67 71
|
syl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝑋 𝐿 𝑌 ) = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) |
| 73 |
8 72
|
eqeq12d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝐺 = ( 𝑋 𝐿 𝑌 ) ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) ) |
| 74 |
|
rabbi |
⊢ ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ) |
| 75 |
7
|
fveq1i |
⊢ ( 𝑌 ‘ 1 ) = ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) |
| 76 |
9 9 14
|
3pm3.2i |
⊢ ( 1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) |
| 77 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 1 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 1 ) |
| 78 |
76 77
|
mp1i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 1 ) |
| 79 |
75 78
|
eqtrid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑌 ‘ 1 ) = 1 ) |
| 80 |
6
|
fveq1i |
⊢ ( 𝑋 ‘ 1 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) |
| 81 |
9 12 14
|
3pm3.2i |
⊢ ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) |
| 82 |
|
fvpr1g |
⊢ ( ( 1 ∈ V ∧ 0 ∈ V ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
| 83 |
81 82
|
mp1i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
| 84 |
80 83
|
eqtrid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ‘ 1 ) = 0 ) |
| 85 |
79 84
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = ( 1 − 0 ) ) |
| 86 |
|
1m0e1 |
⊢ ( 1 − 0 ) = 1 |
| 87 |
85 86
|
eqtrdi |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) = 1 ) |
| 88 |
87
|
oveq1d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( 1 · ( 𝑝 ‘ 2 ) ) ) |
| 89 |
7
|
fveq1i |
⊢ ( 𝑌 ‘ 2 ) = ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) |
| 90 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2 ) → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
| 91 |
10 14 90
|
mp3an13 |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
| 92 |
89 91
|
eqtrid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑌 ‘ 2 ) = 𝑀 ) |
| 93 |
6
|
fveq1i |
⊢ ( 𝑋 ‘ 2 ) = ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) |
| 94 |
|
fvpr2g |
⊢ ( ( 2 ∈ V ∧ 𝑀 ∈ ℝ ∧ 1 ≠ 2 ) → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
| 95 |
10 14 94
|
mp3an13 |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 2 ) = 𝑀 ) |
| 96 |
93 95
|
eqtrid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ‘ 2 ) = 𝑀 ) |
| 97 |
92 96
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = ( 𝑀 − 𝑀 ) ) |
| 98 |
|
recn |
⊢ ( 𝑀 ∈ ℝ → 𝑀 ∈ ℂ ) |
| 99 |
98
|
subidd |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 𝑀 ) = 0 ) |
| 100 |
97 99
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) = 0 ) |
| 101 |
100
|
oveq1d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
| 102 |
9 9 15 77
|
mp3an12i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 1 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 1 ) |
| 103 |
75 102
|
eqtrid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑌 ‘ 1 ) = 1 ) |
| 104 |
96 103
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) = ( 𝑀 · 1 ) ) |
| 105 |
|
ax-1rid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 · 1 ) = 𝑀 ) |
| 106 |
104 105
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) = 𝑀 ) |
| 107 |
9 12 15 82
|
mp3an12i |
⊢ ( 𝑀 ∈ ℝ → ( { 〈 1 , 0 〉 , 〈 2 , 𝑀 〉 } ‘ 1 ) = 0 ) |
| 108 |
80 107
|
eqtrid |
⊢ ( 𝑀 ∈ ℝ → ( 𝑋 ‘ 1 ) = 0 ) |
| 109 |
108 92
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) = ( 0 · 𝑀 ) ) |
| 110 |
98
|
mul02d |
⊢ ( 𝑀 ∈ ℝ → ( 0 · 𝑀 ) = 0 ) |
| 111 |
109 110
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) = 0 ) |
| 112 |
106 111
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = ( 𝑀 − 0 ) ) |
| 113 |
98
|
subid1d |
⊢ ( 𝑀 ∈ ℝ → ( 𝑀 − 0 ) = 𝑀 ) |
| 114 |
112 113
|
eqtrd |
⊢ ( 𝑀 ∈ ℝ → ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) = 𝑀 ) |
| 115 |
101 114
|
oveq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ) |
| 116 |
88 115
|
eqeq12d |
⊢ ( 𝑀 ∈ ℝ → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 1 · ( 𝑝 ‘ 2 ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ) ) |
| 117 |
116
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 1 · ( 𝑝 ‘ 2 ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ) ) |
| 118 |
1 3
|
rrx2pyel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℝ ) |
| 119 |
118
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 2 ) ∈ ℂ ) |
| 120 |
119
|
mullidd |
⊢ ( 𝑝 ∈ 𝑃 → ( 1 · ( 𝑝 ‘ 2 ) ) = ( 𝑝 ‘ 2 ) ) |
| 121 |
1 3
|
rrx2pxel |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℝ ) |
| 122 |
121
|
recnd |
⊢ ( 𝑝 ∈ 𝑃 → ( 𝑝 ‘ 1 ) ∈ ℂ ) |
| 123 |
122
|
mul02d |
⊢ ( 𝑝 ∈ 𝑃 → ( 0 · ( 𝑝 ‘ 1 ) ) = 0 ) |
| 124 |
123
|
oveq1d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) = ( 0 + 𝑀 ) ) |
| 125 |
120 124
|
eqeq12d |
⊢ ( 𝑝 ∈ 𝑃 → ( ( 1 · ( 𝑝 ‘ 2 ) ) = ( ( 0 · ( 𝑝 ‘ 1 ) ) + 𝑀 ) ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) |
| 126 |
117 125
|
sylan9bb |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) |
| 127 |
126
|
bibi2d |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) ) |
| 128 |
127
|
ralbidva |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ) ) |
| 129 |
98
|
addlidd |
⊢ ( 𝑀 ∈ ℝ → ( 0 + 𝑀 ) = 𝑀 ) |
| 130 |
129
|
adantr |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ 𝑃 ) → ( 0 + 𝑀 ) = 𝑀 ) |
| 131 |
130
|
eqeq2d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) |
| 132 |
131
|
bibi2d |
⊢ ( ( 𝑀 ∈ ℝ ∧ 𝑝 ∈ 𝑃 ) → ( ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ↔ ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
| 133 |
132
|
ralbidva |
⊢ ( 𝑀 ∈ ℝ → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
| 134 |
133
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = ( 0 + 𝑀 ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
| 135 |
1 2 3 4 5 6 7
|
line2xlem |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) → ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
| 136 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
| 137 |
136
|
adantr |
⊢ ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
| 138 |
137
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = ( 0 · ( 𝑝 ‘ 1 ) ) ) |
| 139 |
123
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 0 · ( 𝑝 ‘ 1 ) ) = 0 ) |
| 140 |
138 139
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐴 · ( 𝑝 ‘ 1 ) ) = 0 ) |
| 141 |
140
|
oveq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( 0 + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) ) |
| 142 |
|
recn |
⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) |
| 143 |
142
|
adantr |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 144 |
143
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 145 |
144
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐵 ∈ ℂ ) |
| 146 |
119
|
adantl |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ‘ 2 ) ∈ ℂ ) |
| 147 |
145 146
|
mulcld |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐵 · ( 𝑝 ‘ 2 ) ) ∈ ℂ ) |
| 148 |
147
|
addlidd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 0 + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) |
| 149 |
141 148
|
eqtrd |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) |
| 150 |
149
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝐵 · ( 𝑝 ‘ 2 ) ) = 𝐶 ) ) |
| 151 |
|
simp3 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℝ ) |
| 152 |
151
|
recnd |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐶 ∈ ℂ ) |
| 153 |
152
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐶 ∈ ℂ ) |
| 154 |
|
simpl |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℝ ) |
| 155 |
154
|
recnd |
⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → 𝐵 ∈ ℂ ) |
| 156 |
155
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐵 ∈ ℂ ) |
| 157 |
156
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐵 ∈ ℂ ) |
| 158 |
|
simp2r |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) → 𝐵 ≠ 0 ) |
| 159 |
158
|
ad3antrrr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → 𝐵 ≠ 0 ) |
| 160 |
153 157 146 159
|
divmuld |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐶 / 𝐵 ) = ( 𝑝 ‘ 2 ) ↔ ( 𝐵 · ( 𝑝 ‘ 2 ) ) = 𝐶 ) ) |
| 161 |
|
simpr |
⊢ ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → 𝑀 = ( 𝐶 / 𝐵 ) ) |
| 162 |
161
|
eqcomd |
⊢ ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → ( 𝐶 / 𝐵 ) = 𝑀 ) |
| 163 |
162
|
ad2antlr |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( 𝐶 / 𝐵 ) = 𝑀 ) |
| 164 |
163
|
eqeq1d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( 𝐶 / 𝐵 ) = ( 𝑝 ‘ 2 ) ↔ 𝑀 = ( 𝑝 ‘ 2 ) ) ) |
| 165 |
150 160 164
|
3bitr2d |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ 𝑀 = ( 𝑝 ‘ 2 ) ) ) |
| 166 |
|
eqcom |
⊢ ( 𝑀 = ( 𝑝 ‘ 2 ) ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) |
| 167 |
165 166
|
bitrdi |
⊢ ( ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ∧ 𝑝 ∈ 𝑃 ) → ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) |
| 168 |
167
|
ralrimiva |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) ∧ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) → ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) |
| 169 |
168
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) → ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ) ) |
| 170 |
135 169
|
impbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( 𝑝 ‘ 2 ) = 𝑀 ) ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
| 171 |
128 134 170
|
3bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( ∀ 𝑝 ∈ 𝑃 ( ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 ↔ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) ) ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
| 172 |
74 171
|
bitr3id |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( { 𝑝 ∈ 𝑃 ∣ ( ( 𝐴 · ( 𝑝 ‘ 1 ) ) + ( 𝐵 · ( 𝑝 ‘ 2 ) ) ) = 𝐶 } = { 𝑝 ∈ 𝑃 ∣ ( ( ( 𝑌 ‘ 1 ) − ( 𝑋 ‘ 1 ) ) · ( 𝑝 ‘ 2 ) ) = ( ( ( ( 𝑌 ‘ 2 ) − ( 𝑋 ‘ 2 ) ) · ( 𝑝 ‘ 1 ) ) + ( ( ( 𝑋 ‘ 2 ) · ( 𝑌 ‘ 1 ) ) − ( ( 𝑋 ‘ 1 ) · ( 𝑌 ‘ 2 ) ) ) ) } ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |
| 173 |
73 172
|
bitrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ∧ 𝐶 ∈ ℝ ) ∧ 𝑀 ∈ ℝ ) → ( 𝐺 = ( 𝑋 𝐿 𝑌 ) ↔ ( 𝐴 = 0 ∧ 𝑀 = ( 𝐶 / 𝐵 ) ) ) ) |