Metamath Proof Explorer


Theorem linepmap

Description: A line described with a projective map. (Contributed by NM, 3-Feb-2012)

Ref Expression
Hypotheses isline2.j = ( join ‘ 𝐾 )
isline2.a 𝐴 = ( Atoms ‘ 𝐾 )
isline2.n 𝑁 = ( Lines ‘ 𝐾 )
isline2.m 𝑀 = ( pmap ‘ 𝐾 )
Assertion linepmap ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑀 ‘ ( 𝑃 𝑄 ) ) ∈ 𝑁 )

Proof

Step Hyp Ref Expression
1 isline2.j = ( join ‘ 𝐾 )
2 isline2.a 𝐴 = ( Atoms ‘ 𝐾 )
3 isline2.n 𝑁 = ( Lines ‘ 𝐾 )
4 isline2.m 𝑀 = ( pmap ‘ 𝐾 )
5 simpl1 ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → 𝐾 ∈ Lat )
6 simpl2 ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → 𝑃𝐴 )
7 eqid ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 )
8 7 2 atbase ( 𝑃𝐴𝑃 ∈ ( Base ‘ 𝐾 ) )
9 6 8 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) )
10 simpl3 ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → 𝑄𝐴 )
11 7 2 atbase ( 𝑄𝐴𝑄 ∈ ( Base ‘ 𝐾 ) )
12 10 11 syl ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) )
13 7 1 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
14 5 9 12 13 syl3anc ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) )
15 eqid ( le ‘ 𝐾 ) = ( le ‘ 𝐾 )
16 7 15 2 4 pmapval ( ( 𝐾 ∈ Lat ∧ ( 𝑃 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑃 𝑄 ) ) = { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } )
17 5 14 16 syl2anc ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑀 ‘ ( 𝑃 𝑄 ) ) = { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } )
18 eqid { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } = { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) }
19 15 1 2 3 islinei ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ ( 𝑃𝑄 ∧ { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } = { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } ) ) → { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } ∈ 𝑁 )
20 18 19 mpanr2 ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → { 𝑟𝐴𝑟 ( le ‘ 𝐾 ) ( 𝑃 𝑄 ) } ∈ 𝑁 )
21 17 20 eqeltrd ( ( ( 𝐾 ∈ Lat ∧ 𝑃𝐴𝑄𝐴 ) ∧ 𝑃𝑄 ) → ( 𝑀 ‘ ( 𝑃 𝑄 ) ) ∈ 𝑁 )