Step |
Hyp |
Ref |
Expression |
1 |
|
isline2.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
2 |
|
isline2.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
3 |
|
isline2.n |
⊢ 𝑁 = ( Lines ‘ 𝐾 ) |
4 |
|
isline2.m |
⊢ 𝑀 = ( pmap ‘ 𝐾 ) |
5 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝐾 ∈ Lat ) |
6 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ 𝐴 ) |
7 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
8 |
7 2
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
9 |
6 8
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑃 ∈ ( Base ‘ 𝐾 ) ) |
10 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ 𝐴 ) |
11 |
7 2
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
12 |
10 11
|
syl |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → 𝑄 ∈ ( Base ‘ 𝐾 ) ) |
13 |
7 1
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ ( Base ‘ 𝐾 ) ∧ 𝑄 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
14 |
5 9 12 13
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) |
15 |
|
eqid |
⊢ ( le ‘ 𝐾 ) = ( le ‘ 𝐾 ) |
16 |
7 15 2 4
|
pmapval |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ ( Base ‘ 𝐾 ) ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ) |
17 |
5 14 16
|
syl2anc |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ) |
18 |
|
eqid |
⊢ { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } |
19 |
15 1 2 3
|
islinei |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ ( 𝑃 ≠ 𝑄 ∧ { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } = { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ) ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ∈ 𝑁 ) |
20 |
18 19
|
mpanr2 |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → { 𝑟 ∈ 𝐴 ∣ 𝑟 ( le ‘ 𝐾 ) ( 𝑃 ∨ 𝑄 ) } ∈ 𝑁 ) |
21 |
17 20
|
eqeltrd |
⊢ ( ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑃 ≠ 𝑄 ) → ( 𝑀 ‘ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝑁 ) |