Step |
Hyp |
Ref |
Expression |
1 |
|
linepsubcl.n |
⊢ 𝑁 = ( Lines ‘ 𝐾 ) |
2 |
|
linepsubcl.c |
⊢ 𝐶 = ( PSubCl ‘ 𝐾 ) |
3 |
|
hllat |
⊢ ( 𝐾 ∈ HL → 𝐾 ∈ Lat ) |
4 |
|
eqid |
⊢ ( join ‘ 𝐾 ) = ( join ‘ 𝐾 ) |
5 |
|
eqid |
⊢ ( Atoms ‘ 𝐾 ) = ( Atoms ‘ 𝐾 ) |
6 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
7 |
4 5 1 6
|
isline2 |
⊢ ( 𝐾 ∈ Lat → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) ) |
8 |
3 7
|
syl |
⊢ ( 𝐾 ∈ HL → ( 𝑋 ∈ 𝑁 ↔ ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) ) ) |
9 |
3
|
adantr |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → 𝐾 ∈ Lat ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝐾 ) = ( Base ‘ 𝐾 ) |
11 |
10 5
|
atbase |
⊢ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
12 |
11
|
ad2antrl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → 𝑝 ∈ ( Base ‘ 𝐾 ) ) |
13 |
10 5
|
atbase |
⊢ ( 𝑞 ∈ ( Atoms ‘ 𝐾 ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
14 |
13
|
ad2antll |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → 𝑞 ∈ ( Base ‘ 𝐾 ) ) |
15 |
10 4
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑝 ∈ ( Base ‘ 𝐾 ) ∧ 𝑞 ∈ ( Base ‘ 𝐾 ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) |
16 |
9 12 14 15
|
syl3anc |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) |
17 |
10 6 2
|
pmapsubclN |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ∈ ( Base ‘ 𝐾 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐶 ) |
18 |
16 17
|
syldan |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐶 ) |
19 |
|
eleq1a |
⊢ ( ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ∈ 𝐶 → ( 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑋 ∈ 𝐶 ) ) |
20 |
18 19
|
syl |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) → 𝑋 ∈ 𝐶 ) ) |
21 |
20
|
adantld |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∧ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ) ) → ( ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) → 𝑋 ∈ 𝐶 ) ) |
22 |
21
|
rexlimdvva |
⊢ ( 𝐾 ∈ HL → ( ∃ 𝑝 ∈ ( Atoms ‘ 𝐾 ) ∃ 𝑞 ∈ ( Atoms ‘ 𝐾 ) ( 𝑝 ≠ 𝑞 ∧ 𝑋 = ( ( pmap ‘ 𝐾 ) ‘ ( 𝑝 ( join ‘ 𝐾 ) 𝑞 ) ) ) → 𝑋 ∈ 𝐶 ) ) |
23 |
8 22
|
sylbid |
⊢ ( 𝐾 ∈ HL → ( 𝑋 ∈ 𝑁 → 𝑋 ∈ 𝐶 ) ) |
24 |
23
|
imp |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝑁 ) → 𝑋 ∈ 𝐶 ) |