Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lineq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
lineq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
lineq.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | ||
lineq.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | ||
lineq.n0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | ||
Assertion | lineq | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lineq.a | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | lineq.b | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | lineq.x | ⊢ ( 𝜑 → 𝑋 ∈ ℂ ) | |
4 | lineq.y | ⊢ ( 𝜑 → 𝑌 ∈ ℂ ) | |
5 | lineq.n0 | ⊢ ( 𝜑 → 𝐴 ≠ 0 ) | |
6 | 1 3 | mulcld | ⊢ ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ℂ ) |
7 | 6 2 4 | addlsub | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ ( 𝐴 · 𝑋 ) = ( 𝑌 − 𝐵 ) ) ) |
8 | 4 2 | subcld | ⊢ ( 𝜑 → ( 𝑌 − 𝐵 ) ∈ ℂ ) |
9 | 1 3 8 5 | rdiv | ⊢ ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝑌 − 𝐵 ) ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |
10 | 7 9 | bitrd | ⊢ ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ 𝑋 = ( ( 𝑌 − 𝐵 ) / 𝐴 ) ) ) |