Metamath Proof Explorer


Theorem lineq

Description: Solution of a (scalar) linear equation. (Contributed by BJ, 6-Jun-2019)

Ref Expression
Hypotheses lineq.a ( 𝜑𝐴 ∈ ℂ )
lineq.b ( 𝜑𝐵 ∈ ℂ )
lineq.x ( 𝜑𝑋 ∈ ℂ )
lineq.y ( 𝜑𝑌 ∈ ℂ )
lineq.n0 ( 𝜑𝐴 ≠ 0 )
Assertion lineq ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌𝑋 = ( ( 𝑌𝐵 ) / 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 lineq.a ( 𝜑𝐴 ∈ ℂ )
2 lineq.b ( 𝜑𝐵 ∈ ℂ )
3 lineq.x ( 𝜑𝑋 ∈ ℂ )
4 lineq.y ( 𝜑𝑌 ∈ ℂ )
5 lineq.n0 ( 𝜑𝐴 ≠ 0 )
6 1 3 mulcld ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ℂ )
7 6 2 4 addlsub ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌 ↔ ( 𝐴 · 𝑋 ) = ( 𝑌𝐵 ) ) )
8 4 2 subcld ( 𝜑 → ( 𝑌𝐵 ) ∈ ℂ )
9 1 3 8 5 rdiv ( 𝜑 → ( ( 𝐴 · 𝑋 ) = ( 𝑌𝐵 ) ↔ 𝑋 = ( ( 𝑌𝐵 ) / 𝐴 ) ) )
10 7 9 bitrd ( 𝜑 → ( ( ( 𝐴 · 𝑋 ) + 𝐵 ) = 𝑌𝑋 = ( ( 𝑌𝐵 ) / 𝐴 ) ) )