Metamath Proof Explorer


Theorem lineset

Description: The set of lines in a Hilbert lattice. (Contributed by NM, 19-Sep-2011)

Ref Expression
Hypotheses lineset.l = ( le ‘ 𝐾 )
lineset.j = ( join ‘ 𝐾 )
lineset.a 𝐴 = ( Atoms ‘ 𝐾 )
lineset.n 𝑁 = ( Lines ‘ 𝐾 )
Assertion lineset ( 𝐾𝐵𝑁 = { 𝑠 ∣ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } )

Proof

Step Hyp Ref Expression
1 lineset.l = ( le ‘ 𝐾 )
2 lineset.j = ( join ‘ 𝐾 )
3 lineset.a 𝐴 = ( Atoms ‘ 𝐾 )
4 lineset.n 𝑁 = ( Lines ‘ 𝐾 )
5 elex ( 𝐾𝐵𝐾 ∈ V )
6 fveq2 ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = ( Atoms ‘ 𝐾 ) )
7 6 3 eqtr4di ( 𝑘 = 𝐾 → ( Atoms ‘ 𝑘 ) = 𝐴 )
8 fveq2 ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = ( le ‘ 𝐾 ) )
9 8 1 eqtr4di ( 𝑘 = 𝐾 → ( le ‘ 𝑘 ) = )
10 9 breqd ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ↔ 𝑝 ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ) )
11 fveq2 ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = ( join ‘ 𝐾 ) )
12 11 2 eqtr4di ( 𝑘 = 𝐾 → ( join ‘ 𝑘 ) = )
13 12 oveqd ( 𝑘 = 𝐾 → ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) = ( 𝑞 𝑟 ) )
14 13 breq2d ( 𝑘 = 𝐾 → ( 𝑝 ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ↔ 𝑝 ( 𝑞 𝑟 ) ) )
15 10 14 bitrd ( 𝑘 = 𝐾 → ( 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) ↔ 𝑝 ( 𝑞 𝑟 ) ) )
16 7 15 rabeqbidv ( 𝑘 = 𝐾 → { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } )
17 16 eqeq2d ( 𝑘 = 𝐾 → ( 𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ↔ 𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) )
18 17 anbi2d ( 𝑘 = 𝐾 → ( ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) ↔ ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) ) )
19 7 18 rexeqbidv ( 𝑘 = 𝐾 → ( ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) ↔ ∃ 𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) ) )
20 7 19 rexeqbidv ( 𝑘 = 𝐾 → ( ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) ↔ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) ) )
21 20 abbidv ( 𝑘 = 𝐾 → { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } = { 𝑠 ∣ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } )
22 df-lines Lines = ( 𝑘 ∈ V ↦ { 𝑠 ∣ ∃ 𝑞 ∈ ( Atoms ‘ 𝑘 ) ∃ 𝑟 ∈ ( Atoms ‘ 𝑘 ) ( 𝑞𝑟𝑠 = { 𝑝 ∈ ( Atoms ‘ 𝑘 ) ∣ 𝑝 ( le ‘ 𝑘 ) ( 𝑞 ( join ‘ 𝑘 ) 𝑟 ) } ) } )
23 3 fvexi 𝐴 ∈ V
24 df-sn { { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } } = { 𝑠𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } }
25 snex { { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } } ∈ V
26 24 25 eqeltrri { 𝑠𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } } ∈ V
27 simpr ( ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) → 𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } )
28 27 ss2abi { 𝑠 ∣ ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } ⊆ { 𝑠𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } }
29 26 28 ssexi { 𝑠 ∣ ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } ∈ V
30 23 23 29 ab2rexex2 { 𝑠 ∣ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } ∈ V
31 21 22 30 fvmpt ( 𝐾 ∈ V → ( Lines ‘ 𝐾 ) = { 𝑠 ∣ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } )
32 4 31 eqtrid ( 𝐾 ∈ V → 𝑁 = { 𝑠 ∣ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } )
33 5 32 syl ( 𝐾𝐵𝑁 = { 𝑠 ∣ ∃ 𝑞𝐴𝑟𝐴 ( 𝑞𝑟𝑠 = { 𝑝𝐴𝑝 ( 𝑞 𝑟 ) } ) } )