| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llni2.j | ⊢  ∨   =  ( join ‘ 𝐾 ) | 
						
							| 2 |  | llni2.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 3 |  | llni2.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
						
							| 4 |  | simpl2 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑃  ∈  𝐴 ) | 
						
							| 5 |  | simpl3 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑄  ∈  𝐴 ) | 
						
							| 6 |  | simpr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝑃  ≠  𝑄 ) | 
						
							| 7 |  | eqidd | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 8 |  | neeq1 | ⊢ ( 𝑟  =  𝑃  →  ( 𝑟  ≠  𝑠  ↔  𝑃  ≠  𝑠 ) ) | 
						
							| 9 |  | oveq1 | ⊢ ( 𝑟  =  𝑃  →  ( 𝑟  ∨  𝑠 )  =  ( 𝑃  ∨  𝑠 ) ) | 
						
							| 10 | 9 | eqeq2d | ⊢ ( 𝑟  =  𝑃  →  ( ( 𝑃  ∨  𝑄 )  =  ( 𝑟  ∨  𝑠 )  ↔  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑠 ) ) ) | 
						
							| 11 | 8 10 | anbi12d | ⊢ ( 𝑟  =  𝑃  →  ( ( 𝑟  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑟  ∨  𝑠 ) )  ↔  ( 𝑃  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑠 ) ) ) ) | 
						
							| 12 |  | neeq2 | ⊢ ( 𝑠  =  𝑄  →  ( 𝑃  ≠  𝑠  ↔  𝑃  ≠  𝑄 ) ) | 
						
							| 13 |  | oveq2 | ⊢ ( 𝑠  =  𝑄  →  ( 𝑃  ∨  𝑠 )  =  ( 𝑃  ∨  𝑄 ) ) | 
						
							| 14 | 13 | eqeq2d | ⊢ ( 𝑠  =  𝑄  →  ( ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑠 )  ↔  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑄 ) ) ) | 
						
							| 15 | 12 14 | anbi12d | ⊢ ( 𝑠  =  𝑄  →  ( ( 𝑃  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑠 ) )  ↔  ( 𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑄 ) ) ) ) | 
						
							| 16 | 11 15 | rspc2ev | ⊢ ( ( 𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴  ∧  ( 𝑃  ≠  𝑄  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑃  ∨  𝑄 ) ) )  →  ∃ 𝑟  ∈  𝐴 ∃ 𝑠  ∈  𝐴 ( 𝑟  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑟  ∨  𝑠 ) ) ) | 
						
							| 17 | 4 5 6 7 16 | syl112anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ∃ 𝑟  ∈  𝐴 ∃ 𝑠  ∈  𝐴 ( 𝑟  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑟  ∨  𝑠 ) ) ) | 
						
							| 18 |  | simpl1 | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  𝐾  ∈  HL ) | 
						
							| 19 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 20 | 19 1 2 | hlatjcl | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 22 | 19 1 2 3 | islln3 | ⊢ ( ( 𝐾  ∈  HL  ∧  ( 𝑃  ∨  𝑄 )  ∈  ( Base ‘ 𝐾 ) )  →  ( ( 𝑃  ∨  𝑄 )  ∈  𝑁  ↔  ∃ 𝑟  ∈  𝐴 ∃ 𝑠  ∈  𝐴 ( 𝑟  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑟  ∨  𝑠 ) ) ) ) | 
						
							| 23 | 18 21 22 | syl2anc | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( ( 𝑃  ∨  𝑄 )  ∈  𝑁  ↔  ∃ 𝑟  ∈  𝐴 ∃ 𝑠  ∈  𝐴 ( 𝑟  ≠  𝑠  ∧  ( 𝑃  ∨  𝑄 )  =  ( 𝑟  ∨  𝑠 ) ) ) ) | 
						
							| 24 | 17 23 | mpbird | ⊢ ( ( ( 𝐾  ∈  HL  ∧  𝑃  ∈  𝐴  ∧  𝑄  ∈  𝐴 )  ∧  𝑃  ≠  𝑄 )  →  ( 𝑃  ∨  𝑄 )  ∈  𝑁 ) |