Step |
Hyp |
Ref |
Expression |
1 |
|
atmod.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
atmod.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
atmod.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
atmod.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
atmod.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
simpl1 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ HL ) |
7 |
|
simpl2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑋 ∈ 𝐵 ) |
8 |
|
simprl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐴 ) |
9 |
|
simprr |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐴 ) |
10 |
|
eqid |
⊢ ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 ) |
11 |
|
eqid |
⊢ ( +𝑃 ‘ 𝐾 ) = ( +𝑃 ‘ 𝐾 ) |
12 |
1 3 5 10 11
|
pmapjlln1 |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) |
13 |
6 7 8 9 12
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) |
14 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝐾 ∈ Lat ) |
15 |
1 5
|
atbase |
⊢ ( 𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵 ) |
16 |
8 15
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑃 ∈ 𝐵 ) |
17 |
1 5
|
atbase |
⊢ ( 𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵 ) |
18 |
9 17
|
syl |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑄 ∈ 𝐵 ) |
19 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
20 |
14 16 18 19
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
21 |
|
simpl3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → 𝑌 ∈ 𝐵 ) |
22 |
1 2 3 4 10 11
|
hlmod1i |
⊢ ( ( 𝐾 ∈ HL ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) ) |
23 |
6 7 20 21 22
|
syl13anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( ( 𝑋 ≤ 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃 ‘ 𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 ∨ 𝑄 ) ) ) ) → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) ) |
24 |
13 23
|
mpan2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ) → ( 𝑋 ≤ 𝑌 → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) ) |
25 |
24
|
3impia |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≤ 𝑌 ) → ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) = ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) ) |
26 |
25
|
eqcomd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑋 ≤ 𝑌 ) → ( 𝑋 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑌 ) ) = ( ( 𝑋 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑌 ) ) |