Metamath Proof Explorer


Theorem llnmod1i2

Description: Version of modular law pmod1i that holds in a Hilbert lattice, when one element is a lattice line (expressed as the join P .\/ Q ). (Contributed by NM, 16-Sep-2012) (Revised by Mario Carneiro, 10-May-2013)

Ref Expression
Hypotheses atmod.b 𝐵 = ( Base ‘ 𝐾 )
atmod.l = ( le ‘ 𝐾 )
atmod.j = ( join ‘ 𝐾 )
atmod.m = ( meet ‘ 𝐾 )
atmod.a 𝐴 = ( Atoms ‘ 𝐾 )
Assertion llnmod1i2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑋 𝑌 ) → ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) = ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) )

Proof

Step Hyp Ref Expression
1 atmod.b 𝐵 = ( Base ‘ 𝐾 )
2 atmod.l = ( le ‘ 𝐾 )
3 atmod.j = ( join ‘ 𝐾 )
4 atmod.m = ( meet ‘ 𝐾 )
5 atmod.a 𝐴 = ( Atoms ‘ 𝐾 )
6 simpl1 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝐾 ∈ HL )
7 simpl2 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝑋𝐵 )
8 simprl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝑃𝐴 )
9 simprr ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝑄𝐴 )
10 eqid ( pmap ‘ 𝐾 ) = ( pmap ‘ 𝐾 )
11 eqid ( +𝑃𝐾 ) = ( +𝑃𝐾 )
12 1 3 5 10 11 pmapjlln1 ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵𝑃𝐴𝑄𝐴 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ( 𝑃 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 𝑄 ) ) ) )
13 6 7 8 9 12 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ( 𝑃 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 𝑄 ) ) ) )
14 6 hllatd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝐾 ∈ Lat )
15 1 5 atbase ( 𝑃𝐴𝑃𝐵 )
16 8 15 syl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝑃𝐵 )
17 1 5 atbase ( 𝑄𝐴𝑄𝐵 )
18 9 17 syl ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝑄𝐵 )
19 1 3 latjcl ( ( 𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵 ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
20 14 16 18 19 syl3anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → ( 𝑃 𝑄 ) ∈ 𝐵 )
21 simpl3 ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → 𝑌𝐵 )
22 1 2 3 4 10 11 hlmod1i ( ( 𝐾 ∈ HL ∧ ( 𝑋𝐵 ∧ ( 𝑃 𝑄 ) ∈ 𝐵𝑌𝐵 ) ) → ( ( 𝑋 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ( 𝑃 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) ) )
23 6 7 20 21 22 syl13anc ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → ( ( 𝑋 𝑌 ∧ ( ( pmap ‘ 𝐾 ) ‘ ( 𝑋 ( 𝑃 𝑄 ) ) ) = ( ( ( pmap ‘ 𝐾 ) ‘ 𝑋 ) ( +𝑃𝐾 ) ( ( pmap ‘ 𝐾 ) ‘ ( 𝑃 𝑄 ) ) ) ) → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) ) )
24 13 23 mpan2d ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ) → ( 𝑋 𝑌 → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) ) )
25 24 3impia ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑋 𝑌 ) → ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) = ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) )
26 25 eqcomd ( ( ( 𝐾 ∈ HL ∧ 𝑋𝐵𝑌𝐵 ) ∧ ( 𝑃𝐴𝑄𝐴 ) ∧ 𝑋 𝑌 ) → ( 𝑋 ( ( 𝑃 𝑄 ) 𝑌 ) ) = ( ( 𝑋 ( 𝑃 𝑄 ) ) 𝑌 ) )