Step |
Hyp |
Ref |
Expression |
1 |
|
atmod.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
2 |
|
atmod.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
3 |
|
atmod.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
4 |
|
atmod.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
5 |
|
atmod.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
7 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
8 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ 𝐵 ) |
9 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) |
10 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) |
11 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
12 |
6 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
13 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
14 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) |
15 |
7 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) |
16 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
17 |
7 8 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
18 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
19 |
7 8 12 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
20 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
21 |
7 13 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
22 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) = ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
23 |
7 12 8 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) = ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
24 |
23
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
25 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ≤ 𝑋 ) |
26 |
1 2 3 4 5
|
llnmod1i2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
27 |
6 8 13 9 10 25 26
|
syl321anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
28 |
21 24 27
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) = ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
29 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
30 |
7 13 12 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
31 |
30
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
32 |
17 28 31
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) ) |