| Step |
Hyp |
Ref |
Expression |
| 1 |
|
atmod.b |
⊢ 𝐵 = ( Base ‘ 𝐾 ) |
| 2 |
|
atmod.l |
⊢ ≤ = ( le ‘ 𝐾 ) |
| 3 |
|
atmod.j |
⊢ ∨ = ( join ‘ 𝐾 ) |
| 4 |
|
atmod.m |
⊢ ∧ = ( meet ‘ 𝐾 ) |
| 5 |
|
atmod.a |
⊢ 𝐴 = ( Atoms ‘ 𝐾 ) |
| 6 |
|
simp11 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ HL ) |
| 7 |
6
|
hllatd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝐾 ∈ Lat ) |
| 8 |
|
simp13 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ∈ 𝐵 ) |
| 9 |
|
simp2l |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑃 ∈ 𝐴 ) |
| 10 |
|
simp2r |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑄 ∈ 𝐴 ) |
| 11 |
1 3 5
|
hlatjcl |
⊢ ( ( 𝐾 ∈ HL ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 12 |
6 9 10 11
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) |
| 13 |
|
simp12 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑋 ∈ 𝐵 ) |
| 14 |
1 4
|
latmcl |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) |
| 15 |
7 12 13 14
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) |
| 16 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
| 17 |
7 8 15 16
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
| 18 |
1 3
|
latjcl |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 19 |
7 8 12 18
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) |
| 20 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 21 |
7 13 19 20
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 22 |
1 3
|
latjcom |
⊢ ( ( 𝐾 ∈ Lat ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) = ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 23 |
7 12 8 22
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) = ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) = ( 𝑋 ∧ ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ) ) |
| 25 |
|
simp3 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → 𝑌 ≤ 𝑋 ) |
| 26 |
1 2 3 4 5
|
llnmod1i2 |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 27 |
6 8 13 9 10 25 26
|
syl321anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) = ( ( 𝑌 ∨ ( 𝑃 ∨ 𝑄 ) ) ∧ 𝑋 ) ) |
| 28 |
21 24 27
|
3eqtr4d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) = ( 𝑌 ∨ ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) ) |
| 29 |
1 4
|
latmcom |
⊢ ( ( 𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑃 ∨ 𝑄 ) ∈ 𝐵 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 30 |
7 13 12 29
|
syl3anc |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) = ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ) |
| 31 |
30
|
oveq1d |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( ( ( 𝑃 ∨ 𝑄 ) ∧ 𝑋 ) ∨ 𝑌 ) ) |
| 32 |
17 28 31
|
3eqtr4rd |
⊢ ( ( ( 𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ) ∧ ( 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ) ∧ 𝑌 ≤ 𝑋 ) → ( ( 𝑋 ∧ ( 𝑃 ∨ 𝑄 ) ) ∨ 𝑌 ) = ( 𝑋 ∧ ( ( 𝑃 ∨ 𝑄 ) ∨ 𝑌 ) ) ) |