| Step | Hyp | Ref | Expression | 
						
							| 1 |  | llnneat.a | ⊢ 𝐴  =  ( Atoms ‘ 𝐾 ) | 
						
							| 2 |  | llnneat.n | ⊢ 𝑁  =  ( LLines ‘ 𝐾 ) | 
						
							| 3 |  | hllat | ⊢ ( 𝐾  ∈  HL  →  𝐾  ∈  Lat ) | 
						
							| 4 |  | eqid | ⊢ ( Base ‘ 𝐾 )  =  ( Base ‘ 𝐾 ) | 
						
							| 5 | 4 2 | llnbase | ⊢ ( 𝑋  ∈  𝑁  →  𝑋  ∈  ( Base ‘ 𝐾 ) ) | 
						
							| 6 |  | eqid | ⊢ ( le ‘ 𝐾 )  =  ( le ‘ 𝐾 ) | 
						
							| 7 | 4 6 | latref | ⊢ ( ( 𝐾  ∈  Lat  ∧  𝑋  ∈  ( Base ‘ 𝐾 ) )  →  𝑋 ( le ‘ 𝐾 ) 𝑋 ) | 
						
							| 8 | 3 5 7 | syl2an | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁 )  →  𝑋 ( le ‘ 𝐾 ) 𝑋 ) | 
						
							| 9 | 6 1 2 | llnnleat | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁  ∧  𝑋  ∈  𝐴 )  →  ¬  𝑋 ( le ‘ 𝐾 ) 𝑋 ) | 
						
							| 10 | 9 | 3expia | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁 )  →  ( 𝑋  ∈  𝐴  →  ¬  𝑋 ( le ‘ 𝐾 ) 𝑋 ) ) | 
						
							| 11 | 8 10 | mt2d | ⊢ ( ( 𝐾  ∈  HL  ∧  𝑋  ∈  𝑁 )  →  ¬  𝑋  ∈  𝐴 ) |